LATVIJAS LAUKSAIMNIEC IBAS UNIVERSISTATE
INFORM ACIJAS TEHNOLO GIJU FAUKULT ATE
DATORU SISTEMU KATEDRA

Vit alijs Komasilovs

HETEROG ENAS ROBOTU KOLONIJAS
SPECIFIKACIJASVOPTIMIZ ACIJAS UZDEVUMA
RISINASANAS PROCEDURA

Promocijas darbs doktora grada ieguvei
Inform acijas tehnolggiju nozarée
(Dr.sc.ing.)

* X %
*
*

Es ESF ;
[/ | IEGULD IJUMS TAV A NAKOTNE :

EIROPAS SOCIALAIS Bk *
FONDS EIROPAS SAVIENIBA
Promocijas darba izstrade un noformeSana idzfinanséta no
Eiropas Savienbas Socila fonda

Promocijas darba vadjs: Dr.sc.ing., asoc. profesors
Egils Stalidzans

Promocijas darbu izgidaja: Mg.sc.ing., doktorants
Vitalijs Komasilovs

JELGAVA
2013



LATVIA UNIVERSITY OF AGRICULTURE
FACULTY OF INFORMATION TECHNOLOGIES
DEPARTMENT OF COMPUTER SYSTEMS

Vitalijs Komasilovs

PROCEDURE FOR RESOLVING SPECIFICATION
OPTIMIZATION TASK OF HETEROGENEOUS ROBOT
COLONY

Thesis for the acquisition of doctoral degree
in the field of Information Technologies

(Dr.sc.ing.)
*
2a ESF 0
(] ] INVESTMENT IN YOUR FUTURE S
EUROPEAN SOCIAL X & X
FUND EUROPEAN UNION

Thesis prepared with financial support of EuropeanSocial Fund

Scientific Adviser of the Thesis: Dr.sc.ing., Associate professor
Egils Stalidzans

Author of the Thesis: Mg.sc.ing., Doctorate
Vitalijs Komasilovs

JELGAVA
2013



PARTICULARS

Research was executed atlatvia University of Agriculture, Faculty of
Information Technologies, Department of Computest&ys, Liela st. 2, Jelgava,
Latvia

Experimental research was executed atlatvia University of Agriculture,
Faculty of Information Technologies, Computer SymeDepartment, Liela st. 2,
Jelgava, Latvia

Scientific Advisor of the Doctoral Thesis:Dr.sc.ing. Egils Stalidzans, Associate
Professor, Latvia University of Agriculture

The research results are presented in seven scidittipublications:

1. Komasilovs, V., Stalidzans, E. (2010) Simulation Réal-Time Robot Control
Systems Using Player/Stage Software Imigustrial Simulation Conference 2010
Budapest, Hungary: Eurosys-ETI, p. 39-41.

2. Komasilovs, V., Stalidzans, E. (2011) Functionataaposition method reveals
the number of possible specifications of multi-rbbgstem. In2011 IEEE 12th
International Symposium on Computational Intelligemnd Informatics (CINT.I)
Budapest, Hungary: IEEE, p. 161-165.

3. Komasilovs, V. (2012a) Investment and running cosstimation for
heterogeneous multi-robot system. Hith International Scientific Conference on
Applied Information and Communication Technologyelgava, Latvia,
p. 118-122.

4. Komasilovs, V. (2012b) Investment costs optimizatiof multi-robot system
using genetic algorithm. InAnnual 18th International Scientific Conference
“Research for Rural Development 2012elgava, Latvia, p. 229-232.

5. Komasilovs, V., Stalidzans, E. (2012a) Genetic algm used for initial
evaluation of specification of multi-robot systentin 13th International
Carpathian Control Conferencéligh Tatras, Slovakia: IEEE, p. 313-317.

6. Komasilovs, V., Stalidzans, E. (2012b) Proceduré&pécification Optimization
of Heterogeneous Robotic System. [HEEE 10th Jubilee International
Symposium on Applied Machine Intelligence and matics (SAMI) Herl'any,
Slovakia: IEEE, p. 259-263.



7.

Komasilovs, V. (2013) Software modules for optinti@a of specification of
heterogeneous multi-robot system. k2th International Scientific Conference

Engineering for Rural Developmedelgava, Latvia, p. <in—press>.

The research results were presented at the followgn conferences and

seminars:

1.

Simulation of Real-Time Robot Control Systems Uskigyer/Stage Software.

Industrial Simulation Conferenc8udapest, Hungary. June 7-9, 2010.

. Concept of Functional Decomposition Method Used foptimization of

Specification of Heterogeneous Multi-robot SystdmRTU 52nd International
Scientific ConferenceRiga, Latvia. October 13-15, 2011.

. Complexity analysis of decomposition approach uded optimization of

specification of multi-robot system. ldoint 3rd World Congress of Latvian
Scientists and 4th Letonica Congress “Science, édp@nd National Identity”
Riga, Latvija. October 24-27, 2011.

. Functional decomposition method reveals the nurabpossible specifications of

multi-robot system. In 2011 IEEE 12th International Symposium on
Computational Intelligence and Informatics (CINTIBudapest, Hungary.
November 21-22, 2011.

. Procedure of Specification Optimization of Hetemg@us Robotic System. In

IEEE 10th Jubilee International Symposium on AgpMachine Intelligence and
Informatics (SAMIL)Herl'any, Slovakia. January 26-28, 2012.

. Investment and running cost estimation for hetemegas multi-robot system. In

5th International Scientific Conference on Appliethformation and

Communication Technologyelgava, Latvia. April 26-27, 2012.

. Investment costs optimization of multi-robot systasing genetic algorithm. In

Annual 18th International Scientific Conference $YRarch for Rural
Development 2012"Jelgava, Latvia. May 16-18, 2012.

. Genetic algorithm used for initial evaluation ofesfication of multi-robot

system. In13th International Carpathian Control Conferenceligh Tatras,
Slovakia. May 28-31, 2012.

. Specification optimization of heterogeneous mudtiat systems. In open seminar

of “Development of intellectual multi-agent robotic stsym”. Riga, Latvia.
January 11, 2013.



The thesis was approvedt the expanded academic session of the Compysterss
Department of the Faculty of Information Techno&sgiof the Latvia University of
Agriculture on 30 November, 2012. Minutes No. 5

The doctoral thesis was produced with the assistafd¢cheEuropenian Social Fund
(ESF) project “Atbalsts LLU doktora studiju istenoSanai” (agreement
No. 2009/0180/1DP/1.1.2.1.2/09/IPIA/VIAA/017).



ABSTRACT

PhD thesis oVitalijs Komasilovs on theProcedure for Resolving Specification
Optimization Task of Heterogeneous Robot Colonywas developed at the
Department of Computer Systems of Latvia Universitgriculture during the period
from September 2009 through February 2013.

The PhD thesis consists of 194 pages, comprisingb®es, 39 pictures, 17
formulae, 4 annexes. 247 literature sources wezd.us

The goal of the PhD thesiss to improve the specification development for
heterogeneous multi-robot systems during desiggesby analyzing the full solution
domain instead of testing only a part of possibletons.

In order to achieve the goal of the thesis the ligif objectives were defined as
follows:

1. perform analysis of specification development mdthapplied for heterogeneous
multi-robot systems;

2. define specification optimization task and its siolu concept for heterogeneous
multi-robot systems;

3. develop the procedure for finding optimal speciima of heterogeneous multi-
robot system in full solution domain;

4. develop mission definition technique and its decosion approach for
heterogeneous multi-robot systems;

5. perform the analysis of the size of feasible solutlomain of the specification
optimization task;

6. implement and experimentally test heuristic seaigbrithm for initial evaluation
of specifications of multi-robot system;

7. analyze possibility to use simulation techniques fime evaluation of
specification of multi-robot system.

The content of PhD thesiss structured according to the goal and the tagks
PhD thesis consisting of 6 sections.

Section I gives a general overview of multi-robot systemsculsses the state-of-
the-art of the multi-robot research domain anddatéis specification selection problem

for the heterogeneous multi-robot system.



Section Il defines specification optimization task for mutibot system,
describes the concepts used for optimization amdsgan overview of specification
optimization procedure developed within the thesis.

Section 1l describes the first and the second steps of thecifgmation
optimization procedure, defines mission decompasipproach into components and
tasks.

Section IV refers to the third and the fourth steps of thecdfcation optimization
procedure, provides analysis of the domain of f@assolutions, defines formulas for
estimating the size of the domain, and introduCe®MBot-Gensoftware used for the
analysis.

Section Vrefers to the fifths step of the procedure andhesfinitial evaluation of
solution candidates using heuristic methods, intced GAMBot-Eva software
implementation of genetic algorithm based heurisgarch, describes development of
genetic representation of the solution domain, defthes the model for the estimation
of total costs of ownership.

Section VI refers to the last steps of the procedure andeefimulation based
evaluation of solution candidates, describes thiepsef the simulation environment,
and introduceSiMBot-Ctrcontrol framework and its application peculiastie

The main results conclusions and future development prospectsieseribed in

conclusion of the PhD thesis.



ANOTACIJA

Vitalijs KomasSilovs promocijas darbs Heterogenas robotu kolonijas

specifikacijas optimizacijas uzdevuma risiraSanas procedira izstradats Latvijas

Lauksaimnietbas université, Informacijas Tehnolgiju fakultaté, Datoru sistmu

kateda laika period no 2009. gada septembtdd 2013. gada febaum.

Darba apjoms ir 194 lapaspuses, tas ietver 8 tap@@ attlus, 17 formulas, 4

pielikumi. Darka izmantoti 247 literatras avoti.

Promocijas darba n®rkis ir uzlabot heteragno daudz-robotu si&nu

specifikacijas izstadi projek€Sanas stadij analizjot pilnu risimmjumu telpu nevis

parskatot tikai d&u no iespjamiem risirgjumiem.

Petfjuma merka sasniegSanai tika izvirtti vair aki uzdevumi:

. analiZt specifikacijas izstides metodes, kas ir pielietojamas hetenagn daudz-
robotu sistmam;

. definét specifikacijas optimiZSanas uzdevumu una trisinajluma konceptu
heterognam daudzrobotu si&mam;

. izstradat procediru optinalas heterognas daudzrobotu si@nas specifikcijas
mekleSanai pila risinajumu telg;

. izstradat heterogno daudzrobotu si@nu uzdevuma uzdoSanas tehniku @n t
dekompozijas paémienu;

. anali£t iesgjamo risirsjumu telpas izréru specifikicijas optimizSanas
uzdevumam;

. implemenét un praktiski arbaudt heiristiskis mekéSanas metodi daudzrobotu
sis€Emas specifikcijas pirnmas kartas noerteSanai;

. anali£t iesgEju izmantot imitcijas tehnikas daudz-robotu $istas specifikcijas
otras kartas noérteSanai.

Promocijas darba satursun strukiira veidota atbilstoSi amkim un uzdevumiem

un sastv no 6 nod&m.

Pirmaja nodala ir sniegts prskats par daudz-robotu sistam, ir disku€ts par

jaureakam tendeneém daudzrobotu izges s€ra un ir noadita specifilicijas iz\eles

probkma heterognam daudzrobotu sistnam.



Otra nodda tiek defirets daudzrobotu si@ias specifikcijas optimizSanas
uzdevums, tiek aprakst ta koncepti un tiek dots goskats par specificijas
optimizeSanas proceulu, kas ir izstkdata disericijas ietvaros.

TreSaja nodaa ir apraksiti specifikacijas optimiZSanas procenlas pirmais un
otrais s@i, ir definéts uzdevuma dekomptmzias pacmiens kompone@s un
apakSuzdevumos.

Ceturtaja nodala tiek aprakgti specifikacijas optimiZSanas proceulas treSais
un ceturtais 9 tiek veikta iespjamo risiragjumu telpas an#e, tiek defigtas formulas
risingjumu telpas izréra nowrtéSanai, tiek aprakdgh risirsjumu telpas anaées
programmaira CoMBot-Gen

Piektaja nodala ir defincta risirsjumu kandidtu pirmas kartas noerteSana
izmantojot heiristisks metodes, ir aprakti GAMBot-Eva programmaira kas
implemeng uz geretiska algoritma balstu heiristisko mekldSanu, ir apraksa
risinajumu telpagseretiska atelojuma izstide, ir defirgts kogEjo izmaksu noerteSanas
modelis.

Sestah nodala tiek apraksti pedgjie optimizSanas proceulas sdi, tiek defireta
uz imitacijas mod@iem balsita risinajumu kandidtu nowrteSanas, tiek aprakst
imitacijas vides konfiguicija, tiek apraksts SiMBot-Ctr vadibas karkass unat
izmantoSanagpatnbas.

Galvenie disericijas rezultati, secimjumi un rakotnes perspektas ir

apraksitas dise#cijas seciajumu nodda.



AHHOTAIMS

Hoxtopckas aucceprauus Buranusa Komammnosa «Ilpoueaypa ontumMusanuun
cnenupuKanMu reTeporeHHO KOJOHUM Po0OTOB» paszpaborana Ha Kadenpe
BBIYMCIIUTENIbHBIX CUCTEM JIaTBUICKOrO CENbCKOXO35MCTBEHHOIO YHUBEPCHUTETA B
nepuo Bpemenu ¢ ceHTsa0ps 2009rona no ¢espans 2013roxa.

O6bem pabotel — 194 crpanun, Brmtouas 8 tabmun, 39 wwumoctpanumii, 17
dbopmyi, 4 mpunoxenus. B padore ncnonb3zoBanuck 247 mTUTEpaTypHBIX HCTOUHUKOB.

Henb [JOKTOPCKOIi JAMccepTAllMA —  YCOBEPIICHCTBOBATh  Pa3pabOTKy
cnenuuKanuid Il TETePOTeHHBIX MYJIBTHATCHTHBIX POOOTHU3MPOBAHHBIX CHUCTEM BO
BpeMsl dTama MPOECKTHPOBAHMS, AaHAIU3UPYS IOJHBIA JTOMEH BO3MOXKHBIX pELIEeHUI
BMECTO TECTUPOBAHUS TOJIBKO YaCTH BO3MOKHBIX PEIICHUH.

s pocTHkeHWsl LeJdH JOKTOPCKOW [auccepTauMud ObUIM  BbIIBHHYTbI
ceayonue 3a1a4u;

1. ananu3upoBaTh METOIBI Ppa3pabOTKH cHenudUKAUKA  JJI1  TeTePOreHHBIX
MYJBTUAT€HTHBIX POOOTU3HPOBAHHBIX CUCTEM,;

2. hopMynupoBaTh 3aJady ONTHMHU3ANUA W KOHIENTH € pemieHus JJis
TeTepOreHHBIX MYJIbTHATCHTHBIX POOOTU3UPOBAHHBIX CHCTEM,

3. pazpaboTarh TpoUEeAYypY JJId HAXOXKICHUS ONTUMAJIBbHOW creruuKaium
TreTEPOreHHON MYJIBTHAreHTHONH POOOTHU3UPOBAHHON CHCTEMBI B IOJHOM JOMEHE
BO3MOXHBIX PELICHUN;

4. pazpaboTarh TEXHUKY JCPUHHUIMH 3alaHusd U e€ JCKOMIO3UIMH IS
reTEePOreHHON MYJIbTUAreHTHON pOOOTU3NPOBAHHONM CUCTEMBI,

5. aHAJIM3UPOBATh pa3Mep IOMEHA BO3ZMOXKHBIX PEIICHUN IS 3aJjauid ONTUMU3AINH
creun(pUKauy reTeporeHHoN MyJIbTHAr€HTHON pOOOTH3NPOBAHHON CUCTEMBI,

6. peann3oBaTh M HKCIEPUMEHTAIHLHO MTPOBEPUTH IBPUCTHUECKHUI aITOPUTM TOUCKA
JUIS TICPBUYHOW OIICHKM CrHenu(uKauu MYyJIbTHATeHTHOW POOOTHU3UPOBAHHOM
CUCTEMBI,

/. aHaTU3UPOBATh BO3MOXKHOCTh HMCIOJI30BaTh TEXHHUKY CUMYJISUUNA JUIsI TOYHOU
OIICHKU CTIeNU(PUKAIII MYJIbTHATEHTHOW POOOTU3UPOBAHHON CUCTEMBI.
Coaep:kaHue JOKTOPCKOW auccepramuu: padoTa CTPYKTypUpOBaHa B

COOTBETCTBHH C LICJIBIO U 3aJa4yaMi U COCTOUT U3 6 rias.



B mnepBoii riaaBe maH oOmui 0030p MyJbTHAareHTHBIX POOOTH3MPOBAHHBIX
cucTeM, OOCYXIAloTCs COBPEMEHHbIE TEHACHIMH B cdepe  HUCCIeI0BaHHM
MYJIbTHAr€HTHBIX ~ POOOTH3MPOBAHHBIX CHCTEM M yKazaHa TmpoOiema BbIOOpa
cnenuuKalnny A1 TeTePOreHHbIX MYJIbTHATeHTHBIX POOOTHU3UPOBAHHBIX CUCTEM.

Bo BTOpoii riaBe ¢Qopmynupyercs 3aJadya ONTHMHU3ALUU CHenu(UKALUU
MYJIBTHATEHTHON POOOTHU3MPOBAHHONW CHUCTEMBI, OMHCAHBI KOHIENTHl ONTHMH3AIUN U
JaH 0030p MpoLEeAypbl ONTUMU3AIMH pa3paboTaHHON B paMKaX JaHHOM JAUCCEPTALUU.

B Tperneii riiaBe onucaHbl NMEPBBIA U BTOPOM IIard MPOUEAYPbl ONTUMH3ALNHI
cneur(UKanuy, ONpeaesneH METOA JIEKOMIIO3UIUH 33JaHusl  POOOTH3UPOBAHHOM
CUCTEMBI B KOMIIOHEHTHI U TTO/133/1a4H.

B 4erBepTOil rJIaBe ONHWCaHbl TPETUW W YETBEPTHIA IIArd MPOLETYPHI
ONTUMM3AIMKU  creurduKauy, JaH aHajlu3 JIOMEHa BO3MOXHBIX peIlIEeHUH,
paszpabotansl (OpMyNBl s pacueTa pasMepa JAOMEHA, OIMCAHO MPOTPAMMHOE
obecnieuenne CoMBot-Genicrionp3oBaHHOE AJIs aHAIKM3A IOMEHA.

B nsToii riaaBe dopmynupoBaHa TEpBUYHAS OIICHKA KaHIMJIATOB PEIICHHI,
UCIIONB3Ysl  dBpUCTHUYECKHE  MeToasl, omucaHo GAMBoOt-Eva mnporpammuoe
obOecrieueHrne, KOTOpPOE peanu3yeT OJBPUCTUYCCKUI TOUCK OCHOBAaHHBIA  Ha
TeHETUYECKOM alropuTMe, (POpMYJIMpPOBAHO TI'E€HETHYECKOE NPEACTaBICHUE IOMEHa
pemieHuid M MOJAENb ISl ONpEeNieHHus COBOKYMHOW CTOMMOCTH  BiaJIeHUs
pOOOTU3UPOBAHHONW CHCTEMOM.

B mecToii rjaBe OmuMcaHbl MOCIEAHHWE IIArH MPOLEAYPHl M (OPMYIHpPOBaHA
OIICHKA KaHJIUAATOB PEIICHUS HAa OCHOBE CUMYIISIMH, OmMHcaHa KOH(UTyparus Cpelibl
cumyIsnuii, paspaboran SiMBOt-Ctr mporpaMMHBIH Kapkac KOHTPOJS W OIMHCAHBI
OCOOEHHOCTH €r0 MCTIOIb30BaHMUS.

OcHoBHbIE pe3yJbTaThl, BBIBOJAb U JajbHEHIINE TNEPCHEKTUBbl PA3BUTHUS

H3JI0KCHBI B KOHIIC I[OKTOpCKOfI AUCCCpTAallNH.
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INTRODUCTION

During the last decade multi-robot systems resehetth has become one of the
most actual directions in the robotics and mangasshers have focused on it. Early
researches laid the foundation of the multi-robgétesm functional principles and
therefore provided a solid base for the followingdstigations. Most of the researches
in multi-robot systems field have a trend to foaus the development of working
solution for a particular task. For now there available a lot of different control
architectures, communication strategies and othproaches developed to be used in
multi-robot system. From the other side there alatively few formal models and
analytical solutions that support decision makingrh design stage.

Despite increased complexity in design and deveéof multi-robot systems,
it has various advantages over single-robot systdins list of advantages of multi-
robot systems includes aspects and applicatiofdlaws:

v robustness or fault tolerance of the system whi&hachieved by additional
redundancy;

v’ tasks which are beyond the limits of single roliké moving the large and heavy
objects, assembly of complex structures;

v’ tasks which are too complex to be cost effectivgpéoform by single multi-
purpose robot;

v’ rapid task execution due to massive parallelismutti-robot system.

Relatively less explored are the multi-robot systetnat are composed from
heterogeneous robots, which means that at leasimmmeber of such system differs
from others by mechanical, sensing or processingwere, or by internal control
architecture. Heterogeneous multi-robot systemsmiiatly have larger fault tolerance
degree and are capable for redundant solutiongpaoftdem, as well as more versatility
in performing complex tasks.

For a user of multi-robot system implemented tdquer certain task one of the
major indicators are the costs of the system. Tumber of robot classes, as well as the
specification of functions of each class and thelper of instances of each class in the
system are the parameters of the system that taeultljusted in order to optimize the
costs of the system. In practice mentioned parasiedee usually predefined and

optimization potential is not assessed. As a resulfiti-robot system becomes
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unattractive for the customer because of lack e&rckalculations in all positions of
costs and predictable results of adjusting thematars of system.

The thesis refers to the formal identification awgghantification of the
characteristics of multi-robot systems and it isated to the approach of optimization
of various parameters of multi-robot systems tochethe most efficient set-up of
system for a particular task assigning necessangtifanality to instances of robot

classes.

Goal and objectives of the thesis

The goal of the thesis is to improve the specificatdevelopment for
heterogeneous multi-robot systems during desiggesby analyzing the full solution
domain instead of testing only a part of possibletons.

In order to achieve the goal of the thesis the disbbjectives were defined as
follows:

1. perform analysis of specification development mdthapplied for heterogeneous
multi-robot systems;

2. define specification optimization task and its siolu concept for heterogeneous
multi-robot systems;

3. develop the procedure for finding optimal speciima of heterogeneous multi-
robot system in full solution domain;

4. develop mission definition technique and its decosion approach for
heterogeneous multi-robot systems;

5. perform the analysis of the size of feasible solutlomain of the specification
optimization task;

6. implement and experimentally test heuristic seaigbrithm for initial evaluation
of specifications of multi-robot system;

7. analyze possibility to use simulation techniques fime evaluation of

specification of multi-robot system.

Research methods

Custom software is developed for analysis of sofutilomain of specification

optimization task for multi-robot systems. This lides modules for defining the
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missions, components and their properties, for igimg solution candidates, for
filtering incomplete combinations and for estimgtithe total number of possible
solutions. The software is developed usiagaprogramming language.

Custom methods of combinatorial analysis are a@ple assess the solution
domain of the problem. Initial evaluation of spesation candidates of multi-robot
system is implemented using genetic algorithm, kbmel for genetic processing is
provided by JGAP framework. Practical experiments are executed edicdted
processing hardware available in universiBiM 3850.

Simulation based evaluation of specification of tiubot system is
implemented usindPlayer device interface and network server for robot wanfa
hardware abstraction layer for robotic devices) &tedge simulation package for

population of mobile robots.

Theses

v There is a lack of formal methods for the develophtd optimal specification of
heterogeneous multi-robot systems.

v Introduced level of the component primitives alldi@smal mission definition for
the multi-robot systems.

v' The size of the solution domain of the specifiaatibevelopment problem for
heterogeneous multi-robot systems depending onntireber of components
grows nonlinearly.

v It is possible to develop full solution domain scalpecification optimization
procedure for heterogeneous multi-robot systems.

Scientific novelty and practical value

v Specification optimization task for a heterogenewusti-robot system is defined
using detailed concepts for the solution includiegmponent and agent
primitives.

v Full solution domain covering heterogeneous multiat system specification
optimization procedure is developed defining therkftow from the business

requirements specification to the preferred speatiibn of the multi-robot system.
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v Formulas for determination of the number of soluiin the specification domain
of multi-robot system are developed.

v' Genetic algorithm based heuristic search is adagted the specification
optimization task adapting techniques for impleragoh of the genetic
representation, the fitness function and the eiumtyprocessing.

v Signal based processing is implemented within ttaenéwork for control of

multi-robot system in the simulated environment.

The developed specification optimization procedenables formal analysis of the
business requirements and provides a frameworkidding the optimal setup of the
heterogeneous multi-robot system. Optimal spediibaaims to apply appropriate
agents and the increase utilization of their congpds in industrial applications. That
leads to the increased efficiency of the producBgatem, which in turn lowers the
maintenance costs of the system and increasediiatisss income.

The author sees the possibility to use the rolsytstem implemented using a real
hardware for fine tuning of the specification ogtiation procedure.

Practical hardware implementation of grass mowiggnés is started within the
master’s thesis supervised by the author. Fielegex@nts with the working prototype

of autonomous grass mower with steering and GP{®myare running.

Acronyms and definitions

The list of acronyms and their definitions usedmmtthe thesis is as follows:

Acronym Definition
CoMBot-Gen | Combination Generator of Multi-Robotteys specification
CPU Central Processing Unit
DBMS Database Management System
DNS Domain Name Service
GAMBot-Eva | Genetic Algorithm based Evaluation of liHRobot System
Specification
GPS Global Positioning System
JDBC Java Database Connectivity
JGAP Java Genetic Algorithms and Genetic ProgramgReckage
SiMBot-Ctr Simulated Multi-Robot System Control Rrawork
TCO Total Costs of Ownership
TCP Transmission Control Protocol
XML eXtensible Markup Language
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1. DEFINING THE PROBLEM OF SPECIFICATION SELECTION
FOR MULTI-ROBOT SYSTEM

From the very beginning of civilized society humamisere endeavored to use
various tools and mechanisms in order to facilitdweir labor and increase level of
production. Technological advances contributedht® development of more complex
machines that in turn boosted the progress. Moti&tory shows great examples of
achievements which changed everyday life of humamdgs such as steam and
combustion engines, industrialization, and eleatqower.

Second half of second millennium is known for matemtion to build complex
automates. The list of great names includes Leen&d Vinci and his mechanical
knight; musical automates by Jacques de Vaucardisashige Tanaka’'s mechanical
toys. They laid the foundation of mechanical teghes afterwards used by modern
inventors in combination with electrical componef@g. Nikola Tesla).

In the early XX century wordrobot’ was introduced by Czech writer Karel
Capek in his play R.U.R. (Rossum's Universal Robdtsg play shows artificial people
called “robots” that are able to think for themsslvand happy to serve. Later Isaac
Asimov used the word “robotics” to describe thiddiof study. Robotics is the field of
science or technology that deals with the desigmstuction, operation, structural
disposition, manufacture and application of rof&tsbotics, 2011). It is closely related
to the science of electronics, engineering, medsaand information technologies. In
popular culture, the term “robot” generally implisesme human-like appearance of
artificially created machines made up of mechameats.

The term “robot” does not have unified definitimontrary, many authors suggest
different interpretation. There are wide diversitydefinitions available in dictionaries:
a machine that resembles a human and does medhaaidane tasks on command; a
person who acts and responds in a mechanical,neoutianner, usually subject to
another's will; any machine or mechanical devicat toperates automatically with
humanlike skill (Robot, 2011).

Together with the definition of robot terms intgént and autonomous are often
used. Murphy (2000a) defines an intelligent rol®itds a mechanical creature which
can function autonomously. In opposite to factartomation, “intelligent” denotes that
robot does not act mindlessly, in repetitive maniié&e “mechanical creature” portion
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of definition is used to emphasize the differenetween a robot and a computer.
Usually robot uses a computer as a building blbci,the robot is able to interact with
its world as opposed to computer, which does nat.deutonomous functioning means
that robot operates self-contained, without reqgirinput from human operator.
Autonomy refers to systems capable of operatirthenreal-world environment without
any form of external control for extended perioddime. It indicates that robot can
adapt to changes in its environment or itself amctioue to carry out its mission. The
author of this work uses aforementioned definitisnmost suitable for the scope of the
research.

First robots used to exhibit biological behavionsl avere used to understand the
principles of robot control. William Grey Walter wahe pioneer in this field; he
demonstrated electronic autonomous robots that al@eeto respond on light stimulus,
by which they used to find recharging station (Sdiolp, 1999). Further advances in
robotics showed wide advantages of this field.He énd of 1950s the first industrial
robot Unimate was created using original patent&ebrge Devol. Machine was used
for automation of dangerous tasks for human workers

Eventually robot utilization on production sites fautomation of various tasks
has become common practiddodern robotic systems are used widely in suchsaasa
machinery, assembly-line production or medicinegrehthey perform repeatable and
precise actions in more efficient way than humaomé& habitual industries are
unimaginable without the utilization of robotic gm1s; these include food processing,
microchip production.

Notable application of the robotic systems, thatusth be mentioned, is the use of
the robots for dangerous service. Remotely opernaiiéithry robots are used for mine
clearance and intelligence that lowers risks fombhns being injured or even killed.
Robots are well suited for the operation in theandaus environments. In 2011 various
types of robots worked to contain the meltdowrhatFukushima Daiichi nuclear plant.
They were designed to operate at radiation lewashigh for humans. Meanwhile the
area above the Fukushima plant was a no-fly zonenfinned aircraft, but a Global
Hawk drone has been providing imagery informatidar(bling, 2011).

Perhaps the best example of intelligent autonomaolost is the Terminator shown
in films by James Cameron. It exhibits extreme #alaifity and autonomy. More real
examples include space exploration robots. Greaameles of engineering

achievements ar®lars Exploration Rovergsee figure 1.1), which operated on Mars
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more than 5 years, while planned length of missvas only 90 day (Bajracharya et al.,
2008).

Figure 1.1 Mars Exploration Rover
Source;_http://en.wikipedia.org/wiki/Mars Explowi Rover (accessed 2012.11.20)

1.1.Robot control principles

The definition of robot used in previous sectionng® toward the intelligent
machine that operates autonomously. However teromtfol” is used frequently in
scope of robotic systems, which appears to be @&amtiotion to autonomy. In order to
clarify this trait deeper insight to the robotigsld is required.

Robotics field is closely related to and even somes$ considered as a part of
mechatronics. Mechatronics is the multidisciplinéield, combination of mechanical
engineering, computing, and electronics, as usddeardesign and development of new
manufacturing techniques (Mechatronics, 2011);ahyeroach aiming at the synergistic
integration of mechanics, electronics, control tggaand computer science within
product design and manufacturing, in order to imprand/or optimize its functionality
(see figure 1.2). The word Mechatronics itself cgmen "mecha” for mechanical and

"tronics" for electronics.
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Figure 1.2.Conc¢$f/of mechatronics

The main difference between mechatronic and rolsystems is that the first gets
required inputs from external sources, while theoad one produces such inputs by its
own.

Robot consists of various types of elements andchsee of that it is usually
considered as a system. System is a group or catiinn of interrelated,
interdependent, or interacting elements formingo#Hective entity; a methodical or
coordinated assemblage of parts, facts, concepts, any assembly of electronic,
electrical, or mechanical components with interaelest functions, usually forming a
self-contained unit; computer system, includinguitdputput devices, the supervisor
program or operating system and possibly othenso# (System, 2011).

With the exception of mechanical construction cssis robot consists of three
main blocks of elements that are as follows:

v’ actuators are mechanical devices that operateebgdhrce of energy, usually in
the form of an electric current, and convert thagrgy to some kind of motion.
Actuators are usually used for robot motion as @slfor manipulating physical
objects in environment;

v’ perception facilities are used to perceive the rimfition about robot's
environment as well as to identify the state ofnternal physical components. It

is usually implemented using various types of etatt sensors;
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v’ control system is an element that links aforemeeiib components into single
unit and directs it in order to perform requiredi@cs.

By the definition, control system is a system fantolling the operation of
another system (Control System, 2011). Control mhelistinguishes wide variety of
control approaches with deep analysis of theimgites and weaknesses, but the very
basic approach is a control system with feedbagf (see figure 1.3).

Measured System System
Input + - error input output P
> »  Controller > System —

Measured output

Sensor <%

Figure 1.3Basic control system

It is used to control output of the system accaydio inputs and taking into
account the output of system (feedback). The el&snshowed on picture are as
follows:

v input is a desired system’s output, which is usuedpresented by any kind of
measurable parameter, such as velocity, temperatumemidity;

v’ sensor is a feedback element, which is used tactdattual output of the system
in terms of measurable parameters;

v’ the actual output value is compared to the inpliievaising a comparator, thus
producing an error signal — the deviation from obivalue (“negative
feedback”);

v' the error signal drives a controller, which proessand amplifies it, and finally
produces a control signal for the controlled system

v’ the controlled system is a device (or a set of @m)i that directly produces the
output of overall system (rotates wheels, affentsrenment).

Conceptually robot control system also correspdodble described principles of
control systems, where the input of the robot acirdystem is a desired behavior of
robot, the feedback is received through the perme@ind the set of actuators affecting
the environment while being controlled by contro(leardware or software).

However robot control concept has several differaianings in robotics. To

some designers it refers exclusively to ensurirag thovement of robot remains stable
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and performs according to control system designer@ai This means that the

parameters of robot actuators are maintained odeaired values. Such aspect of
control is usually called “low-level control”. Thaesign of such control systems follows
the principles of control and systems theories.eDtiobot designers understand robot
control as the ability of the robot to follow insttions toward the goal of a mission.
The abilities such as path planning and executinapping and navigation or task

allocation are considered as “high-level control”.

Low-level control is frequently reactive, that isete is very close coupling of
sensing and action: as soon as sensor detectsngecla the attribute of the robot,
signals are sent to actuators to perform apprepaations. On the other hand, high-
level control often requires reasoning, so sensafigrmation has to be processed in
order to send deliberated signals to actuators.

Matari¢c defines robot control as follows: Robot controlth® process of taking
information about the environment, through the td@msors, processing it as necessary
in order to make decisions about how to act, am texecuting these actions in the
environment (Mataé, 2002).

Following sections provide deeper insight into @as aspects of robot control

systems.
1.1.1.Insight into history of robot control

Science of robotic control systems takes origimenfrcybernetics, which is the
interdisciplinary study of the structure of regolgt systems. Cybernetics is closely
related to control theory and systems theory. Tdwtsr of cybernetic theory where
placed in XVIII — XIX centuries, when first artif@l regulatory systems where created.
Contemporary cybernetics began as an interdisaiplistudy connecting the fields of
control systems, electrical network theory, mect@nengineering, logic modeling,
evolutionary biology and neuroscience in the fitslf of XX century. Early
applications of negative feedback in electronicuis included the control of gun
mounts and radar antenna during World War II. Dyitime second half of XX century
the field of cybernetics followed a boom-bust cyofebecoming dominant because of
various actual research directions and falling winese researches are completed.

Cybernetics is an earlier but still-used generientdor many types of subject

matter. These subjects also extend into many otimeas of science, but are united in
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their study of control of systems. Theoretical aguts from cybernetics are used in such
areas as systems biology, computer science, emgigemanagement.

Perhaps the earliest robot control system was bigétlilliam Grey Walter in the
design of hisTortoisein 1953. He applied natural behavior principlevedeped by
Ashby and Wiener (1952) in form of mathematicaldfegck control systems. Some of
the principles that were captured in his designdaseribed below.

v/ Parsimony: simple is better. Simple reflexes camesas the basis for behavior.

v Exploration or speculation: The system never rematill except when feeding
(recharging). The constant motion is adequate umdemal circumstances to
keep it from being trapped.

v’ Attraction: the system is motivated to move towasdsie environmental object.

v Aversion: the system moves away from certain negastimuli, for example
avoiding heavy obstacles and slopes.

v’ Discernment: the system has the ability to distisiytbetween productive and
unproductive behavior, adapting itself to the gitrmat hand.

Tortoisewas constructed as an analogue device, consistedtivo sensors, two
actuators, and two vacuum tubes. The directionatquell for detecting the light and a
bump contact sensor provided the required enviromahéeedback. One motor steered
the single from driving wheel. The photocell alwgysinted to the direction of this
wheel and thus could scan the environment. Therdyitnotor powered the wheel and

provided locomotion (see figure 1.4).

Figure 1.4 Tortoise robot by William Grey Walter
a — electrical circuit, b — design
Source;_http://www.rutherfordjournal.org/articled® .html (accessed 2012.11.20)

The tortoise exhibited the following behaviors:
v’ seeking light: the sensor rotated until a weaktlgghurce was detected while drive

motor continuously moved the robot to explore thei®nment at the same time;
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v head toward weak light: once a weak light was detedhe tortoise moved in its
direction;

v back away from bright light: an aversive behavipalled the tortoise from bright
light sources;

v' turn and push: used to avoid obstacles, this behavierrode the light response;

v’ recharge battery: when the onboard battery powsrloa, the tortoise perceived

a strong light as weak. Recharging station hachgtfight over it, thus the robot

moved toward it and docked.

The behaviors were utilized in order of their pityarWalter’'s Tortoise exhibited
moderately complex behavior: moving safely arounc@m and recharging itself as
needed (Sabbatini, 1999).

A quite different control system characterized botoconstructed at the Stanford
Research InstituteSR) in 1969. This robotShakey inhabited an artificial world, an
office area with objects specially colored and glthjp assist it in recognizing an object
using vision. It was constructed of two indepentjecontrolled stepper motors and had
a television camera and optical range finder malimie top of it (significantly more
complex than Walter’'s photocell). Bump sensors whaounded at the periphery of
robot for protection. However, the sensor outpugseanot directly connected with the
drive motors. Rather, they formed inputs to “thmKi layer that uses an artificial-
intelligence planner known as tBd RIPSIt was theorem proving system developed in
SRI that used first-order logic to develop a navigagio plan. The planner used
information stored within symbolic world model tetdrmine what actions to take to
achieve the robot’s goal at given time. Thus therafon of the robot consisted of the
“sense-plan-act” sequence.

Around 1977 roboHILARE was created dtAASin Toulouse, France. Its world
contained the smooth flat floors found in typicffice environment. It was equipped
with three wheels, video camera, fourteen ultras@einsors, and a laser range finder
(see figure 1.5). Planning was conducted within tirtevel representational space:
geometric models represented the actual distammksiaasurements of the worlds, and

a relational model expressed the connectivity ohre and corridors.
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Figure 1.5HILARE robot
Source;_http://maisonetranger.wordpress.com/201P80TNusee-des-arts-et-metiers/

(accessed 2012.11.20)

The Stanford Cart was a minimalistic robot platfoused by Moravec to test
stereo vision as a means for navigation (Moravex/7)l The cart successfully
navigated fairly complex twenty meter courses, dvig visually detected obstacles as
it went. Obstacles where added to its internal evartap as detected and were
represented as enclosed spheres. The cart useglasgarch algorithm to find shortest
path through this abstract model.

These and other robotic precursors set the stagetHe advances and

controversies to come as paradigms of robot cantrol
1.1.2.Primitives of robot control paradigms

A paradigm is a philosophy or set of assumptiond/@ntechniques which
characterize an approach to class of problemsryageneral conception of the nature of
scientific endeavor within which a given enquiryusdertaken (Paradigm, 2011b). In
an intellectual discipline a set of assumptionspcepts, values, and practices that
constitutes a way of viewing reality for the comntyrthat shares them (Paradigm,
2011a).

No one paradigm is right; rather, some problemsnsdeetter suited for different
approaches. Applying the right paradigm makes gmobbkolving easier. Therefore,
knowing the paradigms of robotics is one key tanbeable to successfully control a
robot for a particular application.

There are currently three paradigms for organizintglligence of robots:
hierarchical, reactive, and hybrid. There are twaysvof describing the paradigms. The
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first approach is to describe the relationship leetwthe three commonly accepted
primitives of robotics. The primitives themselves as follows:

v' SENSE - the functions taking information from tbbat's sensors and producing
an output useful to other functions;

v PLAN - the functions taking information either froother primitives or using
own knowledge about world, and producing one orarasks for the robot to
perform;

v" ACT - the functions that produce output commandgphfysical actuators.

The second approach is to describe the paradigrithéyway sensory data is
processed and distributed through the system.rregmaradigms, sensor information is
restricted to being used in a specific, or dedatatey for each function of robot. Other
paradigms expect all sensor information to be fpgicessed into single model of
world.

The very first step in design of robot control systis determination of most
suitable paradigm for particular application. Setet of the paradigm engages to use
the tools and common approaches associated to dhedigm, usually called as
architectures.

Arkin (1998) describe several definitions of rolaothitecture. One of them is the
derivative from the definition of computer archiiee, and it states that robot
architecture is the discipline devoted to the des highly specific and individual
robot from a collection of common software buildibigcks. Hayes-Roth (1995) refers
architecture to the set of structural componentsvimch perception, reasoning and
action occur; the specific functionality and interé of each component, and the
interconnection topology between components.

Mataric (1992a) provide another definition, stating thethétecture provides a
principled way of organizing a control system. Hoe® in addition to providing
structure, it imposes constraints on the way thrgrobproblem can be solved.

Russell and Norvig (2009) give definition in theiextbook of artificial
intelligence as follows: the architecture of a robefines how the job of generating
actions from percepts is organized. Thus the defmiof architecture concerns the
practical structure of robot’s control system — soé&ware.

Following sections describe three aforementiondabtracontrol paradigms in

details and consider various architectures us@aiticular paradigms.
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1.1.3. Hierarchical and deliberative robot control paradigm

The hierarchical paradigm is historically the oldesethod of organizing robot
control. Its inception is related to the first Adhot — theShakeymade atSRI The
hierarchical paradigm was prevalent from 1970’s taplate 1980’s when reactive
paradigm took over the initiative. Under it, thébobd operates in a top-down fashion,
mostly relying on planning the actions. It was lobse view how people think.

Under the hierarchical paradigm, the robot senseddywplans the next action,
and then acts. At each step the robot explicitBnplthe next move. Therefore each
action of robot is deliberated by control systeng.(elanning module, Al). It processes
primitives of robotics in sequential and ordered/\aa it is showed on figure 1.6.

» SENSE » PLAN > ACT

Figure 1.6 Hierarchical robot control paradigm

Another distinguishing feature of the hierarchipatadigm is that all the sensing
data is used to create or update global world medekingle data structure, which the
planner accesses. Term world model is very brdagheans both outside environment
and whatever meaning the robot refers to it. Tyipiwarld model in hierarchical
paradigm contains following features:

v’ a previously acquired representation of the enwiremt the robot operates in,
such as a map of building or relations betweeroastand impact;

v’ sensing information, such as a position of rob@riironment;

v' any additional knowledge that might be requirecatgsomplish a task, such as
goals of its mission.

Design and development of generic global world nedevery challenging and
ungrateful task, therefore various assumptionsuaesl in order to simplify the model.
The other drawback of hierarchical paradigm igéguirements for processing power.
In case if the robot operates in the environmeritickv is close to real world, the
complexity of model arises dramatically. As a resiue response time of control system
is too high to direct the robot in such environment

The first studies on the Shakey robot, which cdrggstem was built according
the hierarchical paradigm, showed several desigmess the closed world assumption

and the frame problem. The closed world model aptiom states that the world model
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contains everything the robot needs to know in otdesuccessfully operate, that means
there are no unexpected cases. If closed worlchgstsan is violated, the robot may not

be able to function correctly. On the other har tompleteness of model details
depends on designer of robot: how well the humawiare of the details of the robot’s

environment.

Experiments of moving the Shakey robot between rwamms showed that world
model is likely to be huge. Further investigatianshierarchical paradigm produced
various approaches aimed on world model simpliicat One of solutions tried to
divide the problem into multiple layers of abstrawtthat is to solve the problem on a
coarse level, and then refine solution in detaliéael. Such approach is closely related
to an area of Al called planning, which become egeparate field in scientific
community by the 1980’s. During the 1970’s and 188@any scientists worked on
either computer vision related issues, trying tbtbe robots to be able to better sense
the world, or on path planning, computing mostogt route through robot’s world.
Both were directed by the demand of the hierarthpasadigm which was relevant in
that time.

As mentioned above architecture is a method of emginting a paradigm, of
embodying the principles in some concrete way. &#hthe two most known
architectures of the hierarchical paradigm are Mested Hierarchical Controller
developed by Meystel and the NIST Real-time Corfaygtem originally developed by
Albus. A close inspection of these architectureggsests that they are well suited for
semi-autonomous control. The human operator corddige the world model, decide
the mission, decompose it into a plan, and them aations. The lower level controller
(robot) would carry out the actions. As roboticyatted, the robot could replace more
functions and “move up” the autonomy hierarchy.

The primary advantage of the hierarchical paradigas that it provides an
ordering of the relationship between sensing, plaprand acting. The primary
disadvantage was planning. Every update cyclerdhet had to update a global world
model and then do some type of planning. The sgreial planning algorithms of the
day were extremely slow, so this introduced a $iggmt bottleneck. Also the sensing
and acting are always disconnected. This effegtieéminated any stimulus-response
types of actions that are seen in nature.

Another issue that was never really handled byitectures in the hierarchical

paradigm was uncertainty. It comes in many forrmshsas semantic, sensor noise, and
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actuator errors. Another important aspect of uagety is action completion: did the
robot actually accomplish the action? Thereforeitamvhl control is required to check

to see if the action was successful and then tab@action if it was not.
1.1.4.Reactive and behavior based robot control paradigm

The reactive paradigm grew out of dissatisfactiaththe hierarchical paradigm
and with an influx of ideas from nature (ethologijthough various reactive systems
may or may not strictly adhere to principles oflbgical intelligence, they generally
mimic some aspect of biology. (Brooks, 1986) sumnpeak the dissatisfaction with the
hierarchical paradigm and characterized those mstas having a horizontal
decomposition as shown on figure 1.6.

Instead, an examination of the ethological litematsuggests that intelligence is
layered in a vertical decomposition, shown in fegud.7. Under a vertical
decomposition, an agent starts with primitive sum’/behaviors and evolves new layers
of behaviors which reuse the lower, older behayiorkibit the older behaviors, or
create parallel tracks of more advanced behavidrs.parallel tracks can be thought of
layers, stacked vertically. Each layer has acaesemsors and actuators independently
of any other layers. If anything happens to an aded behavior, the lower layer
behaviors would still operate. This return to lowlewel mimics degradation of
autonomous functions of the brain. Functions of ltin@in stem (such as breathing)
continue independently of higher order functionscfsas counting, face recognition,
task planning.

The reactive paradigm was initially met with stifsistance from traditional
customers of robotics, particularly the militarydanuclear regulatory agencies. These
users of robotic technologies were uncomfortabléh vilhe imprecise way in which
discrete behaviors combine to form a rich emerdpattavior. In particular, reactive
behaviors are not amenable to mathematical prduodsvieng they are sufficient and
correct for a task. In the end, the rapid executiores associated with the reflexive
behaviors led to its acceptance among users.

The fundamental attribute of the reactive paradigimthat all actions are
accomplished through behaviors. By the definitim@havior is the aggregate of
responses to internal and external stimuli, a $ipa@sponse of a certain organism to a

specific stimulus or group of stimuli (Behavior, 1A). In ethological systems,
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behaviors are a direct mapping of sensory inputs pattern of motor actions that are
then used to complete a task. From a mathematgappctive, behaviors are simply a
transfer function, transforming sensory inputs imictuator commands. In robotics
behavior usually treated as a schema that corfsigtieast one algorithm for generating
the pattern of action in a physical actuator (matohema) and one algorithm for
extracting the percept and its strength (percesicia¢ma).

The reactive paradigm literally threw away the PLA&bmponent of the robot
primitives, as shown on figure 1.7. The SENSE ar@dTAcomponents are tightly
coupled into behaviors and all robotic activitiesegge as the result of these behaviors
operating either in sequence or concurrently. TREISE-ACT organization does not
specify how the behaviors are coordinated and obedt; this is addressed by

architectures.

SENSE > ACT

Figure 1.7 Reactive robot control paradigm

Sensing in the reactive paradigm is local to easmabior, or behavior-specific.
Each behavior has its own dedicated sensing. Iryroases, this is implemented as one
sensor and perceptual schema per behavior. Buher cases, more than one behavior
can take output from a sensor and process it difter. One behavior literally does not
know what another behavior is doing or perceivifgure 1.8 graphically shows the

sensing style of the reactive paradigm.

» Behavior A

Behavior B 1

\ A 4

A\ 4

Behavior C
l v

Sensors Actuators

Figure 1.8 Behavior-specific sensing

Aforementioned aspect is fundamentally oppositéhefglobal world model used
in the hierarchical paradigm. Sensing is immedyatalailable to the behavior's
perceptual schema, which can do as little or ashmpuacessing as needed to extract the
relevant percept. If computationally inexpensivegassing is used, then the sensing

portion of the behavior is nearly instantaneousaatibn is very rapid.
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In early implementations of the reactive paradiging, idea of “one sensor, one
behavior” worked well. For more advanced behavidrdyecome useful to fuse the
output of multiple sensors within one perceptudlesca to have increased precision or
a better measure of the strength of the stimulbg flype of sensor fusion is permitted
within the reactive as long as the fusion is ldgoahe behavior.

There are five characteristics of almost all aegttiires that follow the reactive
paradigm.

1. Robots are situated agents operating in an ecoldgniche. This means that
robot is an integral part of the world. A robot hssown goals and intentions.
When a robot acts, it changes the world, and reseimmediate feedback about
the world through sensing. What the robot sensksctafits goals and how it
attempts to meet them, generating a new cycletairec

2. Behaviors serve as the basic building blocks fdirota@ actions, and the overall
behavior of the robot is emergerBehaviors are independent, computational
entities and operate concurrently. The overall bemas emergent: there is no
explicit “controller” module which determinates whaill be done, or functions
which call other functions. There may be a coordidacontrol program in the
schema of behavior, but there is no external ctiatrof all behaviors for a task.
Since the overall behavior or a reactive robot ggeefrom the way its individual
behaviors interact, the major differences betweattive architectures is usually
the specific mechanism for interaction.

3. Only local, behavior-specific sensing is permittddhe use of explicit abstract
representational knowledge in perceptual processwngn though it is behavior-
specific, is avoided. This eliminates unnecessapcessing to create a world
model, then to extract information from it.

4. These systems inherently follow good software dgsimciples.The modularity
of these behaviors supports the decompositiontaslainto component behaviors.
The behaviors are tested independently, and betsamay be assembled from
primitive behaviors.

5. Animal models of behavior are often cited as a dder these systems or a
particular behavior.Unlike in the early days of Al robotics, where rthavas a
conscious effort to not mimic biological intelligem it is very acceptable under

the reactive paradigm to use animals as a motivdtioa collection of behaviors.
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Constructing a robotic system under the reactivagigm is often referred to as
programming by behavior, since the fundamental @rept of any implementation is a
behavior. Programming by behaviors has a numbendvantages, most of them
consistent with good software engineering prin@pBehaviors are inherently modular
and easy to test in isolation from the system. Biha also support incremental
expansion of the capabilities of a robot. It becem®re intelligent by having more
behaviors. The behavioral decomposition resultarinimplementation that works in
real-time and usually computationally inexpensive.

In order to implement a reactive system, the designust identify the set of
behaviors required for the task. The behaviors edher be new or use existing
behaviors. The overall action of the robot emefgas multiple, concurrent behaviors.
Therefore a reactive architecture must provideofeihg functionality:

v the ability to trigger behaviors;
v' the capability to determinate what happens whertiptellbehaviors are active at
the same time.

Another distinguishing feature between reactivdidgectures is how they define a
behavior and any special use of terminology. Tlaeeemany architectures which fit in
the reactive paradigm. The two most known and rfarstalized are the subsumption
(Brooks, 1986; Brooks, 1987) and potential fieldtmoelologies. Subsumption refers to
how behaviors are combined. Potential field methmgies require behaviors to be
implemented as potential fields. Other approachekide fuzzy methods and auction
based decision making, but these tend to be implaaten details rather than
architectural features.

Under the reactive paradigm, systems are compokéedhaviors, which tightly
couple sensing and acting. Sensing in the reapavadigm is local to each behavior. A
behavior may create and use its own internal watdesentation, but there is no global
world model as with hierarchical paradigm. As auleseactive systems are the fastest
executing robotic system possible.

In terms of support of modularity, representativehdectures decompose the
actions and perceptions needed to perform a task lehaviors. Behaviors are
combined to layers and allow incremental develogmeswell as provide high level of
robustness.

Reactive systems are limited to applications whielm be accomplished with

reflexive behaviors. They cannot be transferredidmains where robot needs to do
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planning, reasoning about resource allocation, &ic.practice, very few of the
subsumption levels can be ported to new applicatwthout changes. As with animals,
a reactive robot will also do something consisteith its perception of the world, but

not always the right thing.
1.1.5.Hybrid deliberative reactive robot control paradigm

The two robot paradigms described in the previoestiens developed
independently. The hierarchical SENSE-PLAN-ACT aawh came earlier, with the
Shakey robot being among the first of this spedieactive approach came later. As
would be expected, it was only a matter of timeobefesearchers began to investigate
hybrid versions of the two types of paradigms. Amadine first was (Mataéj 1992b)
who added a planning layer on top of the Brookstdtiple reactive layers. From this
point of view, the simple structure of reactiveharecture can be modified to include
higher-level layers that correspond to planning deliberation. However a number of
advocates of reactive architectures dispute the m@esuch planning and reasoning,
suggesting that the robot’s environment is the golyrce of information it needs.

The new challenge for Al robotics at the beginniighe 1990’s was how to put
the planning and deliberation into robots, but with disrupting the success of the
reactive behavioral control. The consensus washislaavioral control was the best way
to do low level control because of its pragmaticcass, and its elegance as a
computational theory for both biological and maehintelligence. At first, hybrids
were viewed as an artifact of research, without aeml merit for robotic
implementations. Some researchers recommended usatogive paradigm if a robot
was being designed to operate in an unstructuredtommment. If the task was to be
performed in a knowledge-rich environment, thendrighical paradigm was preferable.
Hybrids where believed to be worth of both, invalyithe fast execution times of
reactivity with the difficulties in developing hierchical models.

The current thinking in the robotics communityhatt hybrids are the best general
architectural solution for several reasons. Fitse use of asynchronous processing
techniques allow deliberative functions of exedatiependently of reactive behaviors.
A planner can be slowly computing next goal foohat to navigate to, while the robot
Is reactively navigating toward its current goathwfast update rates. Second, good
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software modularity allows subsystems of objectéiybrid architectures to be mixed
and matched for specific applications.

The organization of hybrid deliberative reactivesteyn can be described as:
PLAN, then SENSCE-ACT (see figure 1.9). The PLANmpmnent includes all
deliberation and global world modeling, not onlyigation or task planning. The robot
would first plan how to accomplish a mission (usghgbal world model) or a task, then
instantiate or turn on a set of behaviors (SENSH-A® execute the plan or a portion
of it. The behaviors would execute until the plaasveompleted, then the planner would

generate a new set of behaviors, and so on.

PLAN

!

ACT <—» SENSE

Figure 1.9 Hybrid deliberative reactive robot control paradigm

The idea of PLAN, then SENSE-ACT evolved from twss@amptions of hybrid
paradigm. First, planning covers a long time hariand requires global knowledge, so
it should be decoupled from real-time executiortlon software design level. Planning
and global modeling algorithms are computationakpensive, so they should be
decoupled from real-time execution just from a dpanint of practicality because they
would slow down the reaction rate.

The organization of sensing in hybrid architectisemore complex. In the
behaviors sensing remains as it was for the reagaradigm, it is local and behavior
specific. But planning and deliberation requiresbgl world models. The model is
constructed by processes independent of the bakspeeific sensing. However, both
the perceptual schema for the behaviors and theeihmdking process can share the
same sensors. Furthermore, the model making pree@sshare the percepts created by
perceptual schemas of behaviors or it can haveosemdich are dedicated to providing
observations which are useful for world modeling lave not used for any active
behaviors.

The hybrid paradigm is an extension of the reacfimeadigm: their behavioral
components are similar. However that is not trnehé reactive paradigm behavior was
referred to purely reflexive operation. In the hgbiparadigm behavior includes

reflexive, innate and learned actions. Hybrid impdatations tend to use assemblages
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of behaviors sequenced over time, rather than pwenibehaviors, there is more
diversity in methods for combining the output freoncurrent behaviors.

The deliberative portion of hybrid architecture taans modules and functions for
things which are not easy to represent in readigteaviors. Some functions require a
global world model, e.g. mapping and path plannBigt. other activities require global
knowledge of a different sort. Planning which bebess to use — behavioral
management — requires knowing something about tihert mission and the current
state of the environment. Likewise, performance itooing uses additional sources of
information to see if the robot actually making gmess to its goal.

While hybrid architectures vary significantly inwidhey implement deliberative
functionality, what they implement is fairly similaGenerally hybrid architecture has
the following modules or objects:

v’ a sequencer agent which generates the set of loekato use in order to
accomplish a subtask, and determinates any secaiandeactivation conditions;

v' a resource manager which allocates resources taviged, including selecting
from libraries of schemas, for example, managezcsglfittest sensor among IR,
sonar or stereo vision devices present on a rabotder to get reliable distance
reading for current state of robot;

v’ a cartographer is responsible for creating, stoand maintaining map or spatial
information, plus methods for accessing the datachvoften contains a global
world model and knowledge representation, evenisfmot a map;

v a mission planner interacts with the human, tramsfothe commands into robot
terms, and constructs a mission plan;

v a performance monitoring and problem solving agdiotvs the robot to notice if
it is making progress or not, as well as providgEovery hints.

The primary contribution of a hybrid paradigm is poovide a template for
merging deliberation and reaction. Robotic architexs designed according to hybrid
robot control paradigm are highly modular. Most direded into layers, which are then
subdivided into modules.

Hybrids tend to have high degree of niche targbtgbiThe addition of the
deliberative component allows hybrids to be usedafaplications not appropriate for
purely reactive systems.

Another attractive aspect of hybrid paradigm ig ttsarepresentative architectures

often explicitly attempt to ensure robustness. Meslwithin the various deliberative
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components attempt to monitor the performance efrdactive behaviors and either
replace or adapt the configuration as needed.

Major drawback of hybrid paradigm is processingrbead needed for robot
control due to planning activities in comparingtwpurely reactive systems, however

this limitation is eliminated by progress in prosieg hardware.

1.2.Heterogeneous multi-robot systems research domain

Previous chapter describes various aspects ofdibet icontrol organization, its
paradigms and architectures. However these appeeauie applicable for the control of
single robot. Robot development methods have edofuether and there appeared
suggestions to use several robots simultaneoustyder to complete more complex
tasks.

During the last decade multi-robot systems resefetdh become one of the most
actual directions in the robotics and many reseascthave focused on it. Early
researches laid the foundation of the multi-robatesm functional principles (Balch,
Parker, 2002; Parker et al., 2005) and therefoogiged a solid base for the following
investigations.

The idea to utilize multiple robots comes from bgital systems like social
insects. Complex social organization and decengdli behavior attended many
researchers from various scientific directions, luding philosophy, sociology,
management, etc. (Oster, Wilson, 1978) Social cissdéike ants, bees or wasps
demonstrate high degree of self-organization anlityalo adopt to environment and
solve complex problems. Many investigations havenbeade in order to understand
basis of such social behavior in terms of work argation (Jeanne, 1986; Gordon,
1996) or structural parameters (Pamilo, 1991a; BamP91b). These features have
long been an inspiration and subject of study waitin to apply same approaches in
variety of economic sectors.

The word “sociobiology” was introduced to describe field of social behavior
of insects (Wilson, 1971). Insect societies areego®d by rigid instincts and appear to
have small number of built-in rules for behavidVikon, 2000) draw a conclusion:
“Each insect colony is an assemblage of relate@rosgns that grow, competes, and
eventually dies in patterns that are consequenicdgedirth and death schedules of its

members.” Despite the fact that there is littleaify autonomy and learning, such
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societies display amazing collaborative behavibrislimportant to note that insect
societies are self-controlled and self-regulatipstems; there is no manager that issues
orders to subordinates. The queen in some insedtt®s is in fact an egg-bearing
machine, with no real authority.

One of significant domains directly inspired by igbcinsects is swarm
intelligence, a subfield of artificial intelligenc&@he roots of swarm intelligence are
deeply embedded in the biological study of selfamiged behaviors in social insects.
Swarm intelligence, as a scientific discipline urdihg research fields such as swarm
optimization or distributed control in collectiv@hotics, was born from biological
insights about the incredible abilities of sociakects to solve their everyday-life
problems (Garnier et al., 2007).

The complexity of collective behaviors and struetudoes not reflect at all the
relative simplicity of the individual behaviors ah insect. However, the complexity of
an individual insect in terms of cognitive or conmraational abilities may be high in
an absolute sense, while remaining not sufficiergftectively supervise a large system
and to explain the complexity of all the behaviatshe colony scale (Seeley, 2002). In
most cases, a single insect is not able to findd®}f an efficient solution to a colony
problem, while the society to which it belongs 8nths a whole” a solution very easily
(Camazine et al., 2003).

Swarm intelligence algorithms are being successfafiplied for such tasks as
computational optimization (Poli et al., 2007; Huab, 2003), routing of traffic in
telecommunication networks (Kassabalidis et al., 0120 business management
(Bonabeau, Meyer, 2001), distributed sensing syst@iackwood, Beni, 1992) and
many others.

Research on multiple mobile robots has lagged lbefgsearch on single robots.
Major reason for it is that for many years robotdweare and software was very
unreliable and required huge amount of effort tegksingle robot working. Over time,
robotic systems have become more available and nohefaper. There has been
increased research interest in systems composeudiltiple autonomous mobile robots
exhibiting cooperative behavior.

First in this area is considered to be biologistiidm Grey Walter (1950), who
constructed two electromechanica@brtoises (see. 1.1.1). In the 1980s there was

significant interest in the control of multiple mpnlators, where two robot arms grasp
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the same object, such as large panel for automastembly (Zheng, Luh, 1985;
Hayati, 1986; Koivo, Bekey, 1988).

In the mid-1990s multiple robot control directioregan to change quickly.
Researchers inspired by the phenomena of sociattmgocused on development of
various algorithms for cooperative control of mpiki robots (Beni, J. Wang, 1993;
Kube, H. Zhang, 1993). Groups of mobile robots wemestructed, with an aim to study
such issues as group architecture, resource crdtigin of cooperation, learning, and
geometric problems (Cao et al., 1997).

Arkin and Balch has studied multi-robot communicatiand navigation during
that period and have developed fundamental plesipsed nowadays (Arkin, 1992;
Arkin, Balch, 1998; Balch, Arkin, 1994; Balch, Arki 1998). Pioneering work in
behavior based multi-robot systems was done by matand her collaborators
(Mataric, 1992a; Matadi, 1994; Mataii, 1997). Parker have studied approaches for
multi-robot cooperative control (Parker, 1994b; Kear 1997; Parker, 1999b) and
successfully developed multi-robot control architee (see 1.2.1).

Despite increased complexity in design and deveégof multi-robot systems,
they have various advantages over single-roboesyst Groups of autonomous robots
are able to perform tasks that may be difficultdesirable, or impossible for single
robot. Some of them are as follows (Bekey, 2005):

v’ explorations in hazardous environments where faitifrone robot should not lead
to failure of the entire mission and where redumgamay increase the fault
tolerance of the colony;

v’ tasks beyond the limits of single robots, like ca@pive lifting or pushing large
and heavy objects or assembly of complex structures

v’ tasks that can be completed more rapidly by meltipbots than possible is for a
single robot due to massive parallelism in mulbabsystem;

v' complex tasks that may be less expensive with apgyaf specialized, simpler
vehicles that with single, multipurpose robot;

v highly distributed sensing, in which large colonigssimple and inexpensive
robots are used as mobile, communicating sensors.

As shown in previous chapters, control of autonosn@lpots requires integration
of principles from biology, control theory, kinenes, dynamics, computer engineering,
and other disciplines. Control of robot group thiage collective performance requires

additional consideration of issues from animal kg social psychology,
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organization theory, economics, and others. Fohgwthapters describe features of
control of multi-robot systems showing specific tohproblems and architectures and

algorithms for solving them.
1.2.1.Control features of robot colonies

Control approaches for multi-robot system are imgpiby behavior of social
insects. Insects of the society display at leasttitommon characteristics:

v' members of the society collaborate in caring ferybung;

v' those members with highest reproductive potentiakeha higher standing in the
society, so workers that are sterile tend to worktlie benefit of their more fertile
fellows;

v there is an overlap of at least two generationthanwork being done for the
colony, so the offspring help their parents dusiogne time in their lives.

These aspects of behavior are not directly apdkctbrobot societies. There are,
however, two additional aspects of organizationnskct societies that can serve as
models for robot societies as well:

v insect societies have evolved a large degree o€iadmation among their
workers; there may be as many as ten distinct alieations;

v’ to coordinate their activities, insects have depetba surprisingly rich repertoire
of communication methods.

The issue of specialization is an important faébora group robotics. In general,
multi-purpose robot will be significantly more exyséve than those designed for special
task. Detailed discussion on this topic is provided.2.2.

The control of robot colonies required completeliffedent approach in
comparison with individual robot control. In genlereontrol of each member of a
colony by an external controller is possible onlythwsmall groups; it is almost
impossible as the colony grows in size, just as inpossible for a military general to
control actions of each individual soldier on atlefield.

Multi-robot research domain in some sense is simtilaanother direction of
artificial intelligence — multi-agents. Both of #edomains fall into a research area of
Distributed Artificial Intelligence. Most of issués organizing teams of robots apply to
software agents as well. Murphy (2000a) classifstiodten cited problems organizing

teams of robots.
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v" Designing teams is hard. How does a designer rém®dhe characteristics of a
problem that make it suitable for robot colony? Hdees the designer or the
agents themselves divide up the task? Are theraaty to predict and verify the
social behavior?

v There is a “too many cooks spoil the broth” effé¢aving more robots working
on a task or in a team increases the possibilint thdividual robots will
unintentionally interfere with each other, lowerithg overall productivity.

v It is hard for a team to recognize when it, or memsbis unproductive. One
solution to the “too many cooks spoil the brothdlplem is to try engineering the
team so that interference cannot happen. But tlaig mot be possible for every
type of team or the vagaries of the open world mmagermine that engineering.
To defeat itself, the team should be capable ofitaong itself to make sure it is
productive. This in turn returns to the issue ahaunication.

v It is not clear when communication is needed, ahdtwo say. Many animals
operate in flocks, maintaining formation without pégit communication.
Formation control is often done simply by percegvihe proximity to or actions
of others; for example, schooling fish try to remagually close to fish on either
side. But robots and modern telecommunicationsni@olgy make it possible for
all agents in team to know whatever is in the nohthe other robots, through at a
computational and hardware costs. How this unpdeall ability be exploited?
What happens if telecommunications links goes Hadbere is a language for
multi-agents that can abstract the important infdraomn and minimize explicit
communication?

v The ‘“right” level of individuality and autonomy igsually not obvious in a
problem domain. Agents with a high degree of indliel autonomy may create
more interference with group goals, even to theatpof seeming “autistic”. But
agents with more autonomy may be better able tbvddaopen world.

There were made a lot of studies on aforementiguegtions and many of them
are not answered at this time. In general, resesasctare working on control
architectures that make application of robot teaonemand more productive. Likewise
in multi-agents, the aim of architecture is to pdeva control framework, which will
allow each robot to perform concurrent but indegedctions, which in turn will lead

to emergent social behavior.
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The number of most successful multi-robot contmahaectures is reviewed in
next chapters in details. But before particulah#dectures the general control strategies
should be indicated. There are three major typesootrol strategies (Bekey, 2005)
described below.

v" Centralized and hierarchical control. By analogyhvdontrol of an army, factory,
or an enterprise, each individual robot in this etypf control strategy is
responsible for small number of other individualgo in turn control alike
number of others, to the bottom level where theagbhysical work is done. In
this strategy the global goal of the entire teany tmaknown only to the top level
of hierarchy. There is clearly a problem if a highel supervisor is disabled. A
lower-level individual must in such case take thace of the disabled leader, just
like it happens in military situations. In the gpof robotics, this implies that
each robot has an internal model of a supervisihicent to allow it to take over
the work of supervisor who has failed. At presémeére is no theoretical basis for
enabling a robot to take over the work of anoth@ngi only internal models, the
external input is required.

v Decentralized and local control. A completely opf@spproach is based on
allowing each individual to operate on local infatmn while accomplishing
global goals. This strategy requires that thesdsgoa contained implicitly within
the rules of behavior of each individual. Coopenatis an emergent property of
the robot colony; it is consequence of the way mclWw the robots interact with
environment. As biological example, consider a nglof ants building an anthill.
It is clear, that individual ants caring leafledameedles to the anthill do not have
a global blueprint of the structure in their braiRather, they follow simple rules,
such as “Move toward home, go as high as you cahdeaposit your load.”

v/ Hybrid structures. Some organizations may incorgordoth types of
aforementioned control strategies, in which sonmugs are highly autonomous
and decentralized, while others operate under aeatithority.

A lot of information on these strategies is avdagatbom a study of human work
structures such as factories and enterprises. iganzation and control of such groups
is the subject of management disciplines (Daft, 2200

Following chapter describe in details most succgssind widely spread

architectures for multi-robot systems.
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Nerd Herdarchitecture

One of the earliest studies on the organizaticeadn of robots was performed by
Maja Mataré. She investigated both theoretical and experinhesgpects of group
behaviors. Her experimental work was performed aroléection of twenty identical
robots manufactured B$X/IS Robotics

Since these robots did not possess a lot of igeikie, they were sometimes
referred to as thBlerd Herd The robots (see figure 1.10) wekekermansteered bases
about 13" long with "forks" that could be used tokpup and stack objects. They had IR
and contact sensors on the ends of the forks, lmémgors on the sides and back, and a
radio-sonar positioning and communication systeheylwere controlled by a network

of 68HC11 processors programmed in the Behavioguage.

Figure 1.10The Nerd Herd colony (Matari¢, 2010)

These robots were used to demonstrate large scalg dpehavior. A number of
the interaction primitives was used in experiments:

v homing — each robot strives to move to common hbase;

v’ aggregation — robots try to gather together whiggmaining a spatial separation;

v’ dispersion — robots cover a large area, estabfishimd maintaining minimum
separation between robots;

v following — robots follow each other;

v collision avoidance — robots move around while dira collisions with obstacles
and each other.

These interaction primitives were implemented usinig-based encoding (“if-
then-else” syntax). Two different coordination magisms are used: direct combination
— which is vector summation process; and tempavatlination — which sequences
through a series of behavior states. Perceptualnrdtion is encoded as a series of
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predicates (e.g. at-home, have-puck) used to entioelesensory data required to
activate the relevant behaviors.

In later research some of the basic behaviors wemined to implement more
complex social interactions, such as foraging.drading behavior the robots begin to
search for food by dispersion. Once robot has &mt&dbod”, it begins homing. During
homing phase, it may avoid other robots not cagyood but follow others who have
it. The group of food-carrying robots then formsflack. In this way, primitive
behaviors can be combined to produce more compies.d&Some other examples are as
follows:

v" flocking, consisting of collision avoidance, aggaggn and dispersion;

v’ surrounding, consisting of collision avoidanceldwaling and aggregation;

v" herding, consisting of surrounding and flocking;

v’ foraging, consisting of collision avoidance, dispen, following, homing and
flocking.

A unique feature of research was the use of aninualels to develop very simple
algorithms for the above behaviors. This simplatetyy was successful folerd Herd
because all the robots were alike; it might requimedifications for colonies of
heterogeneous robots (Matari992b).

TheMissionLabarchitecture

Another group of researches was led by Ronald ®inAwho performed at the
University of Michigan. Their topic was focused application of reactive behavior-
based architectures for robot team control.

Behavior-based architectures decompose a robotigratoprogram into a
collection of behaviors and coordination mechanijdoos the visible behavior of robot
comes from emergent interaction of these behavidbie decomposition process
supports the maintenance of a library of reusablabiors.

The MissionLab is a multi-agent mission specification system dgved at
Georgia Tech, uses an agent-oriented philosophyhasunderlying methodology,
permitting the recursive formulation of societiek robots. It includes a graphical
configuration editor, multi-robot simulation systeamd two different architectural code
generators. The software system embodies the Sbdefent Theory (Mackenzie,
1996), which describes a society as an agent thasists of a collection of either

homogeneous of heterogeneous robots. Each individbat consists of assemblies of
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behaviors, coordinated in various ways. Temporajusecing affords transitions

between various behavioral states is representadfiage state machine. Coordination
of parallel behaviors can be implemented as vesttormation, action selection, priority

or other coordination operators as necessary. Tineséadual behavioral assemblages
consist of groups of primitive perceptual and mdiehaviors, represented by physical
sensors and actuators of the robot.

Creating a configuration of multi-robot system itwes three steps: determining
an appropriate set of skills for each of the ropttnslating those mission-oriented
skills into sets of suitable behaviors (assemblggasd constructing or selecting
suitable coordination mechanisms to ensure thatctineect skill is deployed for the
mission’s duration.

TheMissionLabarchitecture has several important features tlaktensuitable for
wide range of applications of multi-robot system.

v The binding to a particular behavioral architectisedelayed until the desired
mission behavior is specified. Binding to a pataciphysical robot also occurs
after specification. This permits the design to bmh architecture and robot
independent.

v’ The system has separate software libraries forradistehaviors, specific
architectures and various robots. This allows nqued users to specify robot
missions and automatically configure the softwaguired for coordination and
control of a group of robots, either in simulatmmin hardware.

v The system provides multiple levels of abstracteach of which can be targeted
to different specialists. They range from entirbatomission configurations down
to the low-level language for a particular behavior
The MissionLab architecture was developed for effective designd an

implementation for a mission for a team of rob@sveral less effective approaches
were developed within the research program (Madkesizal., 1997).

ALLIANCEarchitecture

Another offshoot of the behavior based approacthesALLIANCE architecture
developed by Lynne Parker (Parker, 1994b; Parl8944; Parker, 1999a). The goal of
the architecture was the development of a faulirtolt, adaptive, distributed, behavior-

based software system for control of teams of mbdirchitecture implies special

consideration for control of heterogeneous teamsraodiots. The robots were to
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accomplish a mission in a dynamic environment anthe presence of failures in their
action selection mechanisms and with noises botlparception and in actuation.
ALLIANCE has been successful at accomplishing its goals heasd inspired other
approaches to the control of multiple robots.

The architecture has several features describealvb&ne of the most notable
features is that there no centralized control deedoordination of robot team. All the
robots are fully autonomous and have the abilitypéoform useful actions even in
presence of failures of other teammates. This m#iesobot team very flexible upon
to composition of the team.

Another feature of the architecture is that theotslof the team can detect the
effects of their own actions and those of other tmemrs of the team. Robots detect own
actions using variety of sensors and feedback abrithe actions of others are detected
via an explicit communication. The robots also abde to select appropriate actions
during mission, taking into account the environmeheir own internal state, and the
actions of other robots.

In comparison with single robot behavior based iggctures theALLIANCE
introduces behavior sets and motivation model éimatbles particular robot to perform
tasks only when those actions are expected to thaveffect. Behavior sets correspond
to some high-level task-achieving functions. Setsbée different groups of behaviors
to be active together or to hibernate, permittingfiguration atypical for subsumption
architectures. Lower-level behaviors correspondstovival behaviors; higher-order
behaviors may correspond to exploration of mapelngl (see figure 1.11). Layer O
represents reactive survival actions and is acivine time; Layer 1 may correspond to
collision avoidance and also be active continudllyer 2 corresponds to higher-level

competences that are turned on or off by the apjategbehavior sets.
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Figure 1.11The ALLIANCE architecture (Parker, 1994a)
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Motivational behaviors enable or disable these Wenhasets. They operate by
accepting, in addition to the inputs from sensard aether behaviors, information from
communication with other teammates and from owreridl motivational state.
Specially, robot impatience and acquiescence isetedd For example, if other robots
do not perform some task needed by current robbedomes increasingly impatient to
take over the needed task and to perform desirgonadtself. Similarly, when robot
becomes aware that it is not completing its tasksgaately, it will try to give up
current task and find other actions to perform.

According to theALLIANCE architecture motivation model is implemented using
rate functions. Each robot's;] overall motivation for a behavior sef; is computed
using formula (1).

m;;(0) =0,

m;(t) = [mij(t -1+ impatienceij(t)] X sensory_feedback;;(t) X

X activity_suppression;;(t) X impatience_reset;;(t) X 1)
X acquiescence;;(t)

where
impatience;(t) is the impatience rate function that determinates

quickly the robot becomes impatient;
sensory_feedback;;(t) is a binary predicate that indicates whether the

preconditions for the behavioral set are satishiedot;
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activity_suppression;;(t) is a binary predicate indicating whether or not

another behavioral set,, j # k is active at time;

impatience_reset;;(t) is a binary predicate that is 0 when another rabot

making progress on the task that the robot is mgibn, and otherwise 1;
acquiescence;;(t) is a binary predicate that determinates whethgie
up on atask or not.

Thus, the motivation for a behavior set will coonto grow unless sensor data
indicates that it is not needed, another compéietgavior is active, another robot has
taken over the task, or the robot gives up on dkk.tWhen motivation value grows up
to an arbitrary defined threshold, the behavioetlg; becomes active in robgt The
robot then periodically broadcasts to all otherotstthe fact that;; is active.

The ALLIANCE has been used for a wide range of mission scenawbich
include hazardous waste cleanup missions, cooperatiulti-robot observation of
multiple moving targets (Parker, 1997; Parker, 199%nd others (Parker, 1998a). To
reduce the need for parameter tuning, the architesthas been extended to include a
learning mechanism, and the modified version i®rrefl asL-ALLIANCE (Parker,
1996; Parker, 1998b). The learning mechanism reguihe robots to monitor and
evaluate their performance in the changing envirmnand then update parameters as

required.

The pheromone architecture

The pheromone architecture refers to biology whareromones are chemical
markers used by insects for communication, cootiinaand sexual attraction. Insects
follow a pheromone trail in a zigzag fashion, mayviecross the trail in one direction
and then another.

The architecture for coordination of multiple rabanspired by pheromone trail
following was developed by David Payton and hioeasdes (Payton et al., 2001). They
use so called virtual pheromones, which presensergml features of biological
pheromones as follows:

v pheromones are locally transmitted, thus ther@iaaed for unique identities that
are impractical in large groups;

v' pheromone diffusion gradients provide importantigational signals and also
encode useful information about barriers in theremment that block pheromone

propagation;
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v pheromones decay over time, which reduces obsoteteelevant information.

Virtual pheromones are implemented as simple besaama directional sensors
mounted on top of each robot. They facilitate senbmmunication and coordination
and require little on-board processing. Robot teaawsdinated by this architecture are
able to perform complex tasks. Some examples ai@laws (Payton et al., 2003):

v' gradient following which enables a dispersed rafwsarm to guide one or more
robots to a particular area or object of interest;

v “go hide”, allowing the entire swarm to run for @mvto avoid detection and/or
injury;

v’ cooperative sensing intended for positive iderdtfiin of some objects, which
requires agreement between two or more robotsereithprovide redundancy for
fault tolerance, or to raise confidence througlssroorrelation.

The robot collective becomes a computing grid erdbddvithin the environment
while acting as a physical embodiment of the uségriace. The virtual pheromone
approach externalizes the map, used in other phithnimg and terrain analysis
methods, spreading it across a collection of simplecessors, each of which
determinates the terrain features in its localRgquired terrain-processing algorithms
are then spread over the population of simple msms. The user interface for this
distributed robot collective is itself distributedand entire collective works
cooperatively to provide a unified display embeddethe environment (Payton et al.,
2002).

The Ranger-Scout architecture

Another approach for cooperative robot controlpiredd by biological marsupials,
was developed by Paul Rybski and his associateBs{Ret al., 2000; Stoeter et al.,
2002). Approach is based on so-called marsupiabtsplin which, by analogy with
kangaroos and other marsupials, a larger robotesaone or more smaller robots and
then deploy them as appropriate. Researches useofeheous team of robots that
consists of two types of robots (see figure 1.12).

v' Scout— mobile sensor platform, have cylindrical shag@ (m in diameter and

110 mm in length), uses unique combination of mglland jumping locomotion.

v' Ranger— platform based oATRV-Jr™ can carry payload up to 25 kg, transfers
scouts to the deployment site. Ranger acts as comation and coordination

hub for scouts.
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Figure 1.12Ranger-Scout team members
a — Scout (http://distrob.cs.umn.edu/scout.php) Ranger (http://Irm.isr.ist.utl.pt/rescue/),
¢ — team composition
Source; _http://www.wired.com/science/discoveriedtfimedia/2004/04/630997slide=6&slideView=6
(accessed 2012.04.15)

The architecture presented several benefits oveer airchitectures. The small
size of scout robots makes them it suitable foesdvchallenging reconnaissance and
surveillance tasks. They can be deployed manuallgunched to desired environment.
Larger utility platform (ranger) carries large nuenlof processing, communication and

control. This makes whole system an effective reassance tool.
1.2.2.Heterogeneity in robot colonies

Previous chapters briefly indicate heterogeneitatdee of robot colonies.
Heterogeneity refers to the degree of similaritywleen individual robots that are
within colony. In general, any robotic system cetieg of multiple robots can be
classified either as homogeneous of heterogenamosyc Heterogeneous colony has at
least two members with different hardware or sofewvacapabilities, while in
homogeneous colony the members are all identicéflerBnces between members of
colony could be in any mechanical, sensing or msiog hardware, or in internal
control architecture (G. S. Sukhatme, 1999). Déferrobot types are called robot
classes. Depending on the level of heterogeneltptsoin a colony are classified as
weakly or strongly heterogeneous. This featuresisrred as diversity of robot colony
and there are several metrics proposed for evaadti for instance, hierarchic social
entropy (Balch, 2000). Moreover, the diversity bé tcolony can change dynamically,
for instance, homogeneous colony can behave acgprdi one model, and then it
becomes heterogeneous if several members changehhbegioral model.

Homogeneous robot colonies are investigated momelwiand are usually

referred as robot swarms. Each robot of such coiemgentical, which simplifies both
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the manufacturing and the software development. biodogical model for such
systems is social insects, such as ants or bees.

An example of competition for homogeneous teamsraifots is RoboCup
(Kitano, Asada, Kuniyoshi, 1997; Kitano, Asada, Kwashi, et al., 1997). A lot of
researchers were challenged by it. As a result msugcessful approaches were
demonstrated during this competition, which in tuvere used as models for real
industrial solutions.

Heterogeneous robot colonies are relatively newdtragn multi-robot systems.
Active researchers assume that within next few diesaobot colonies will consist of
heterogeneous robots because of various advantagers homogeneous swarms
(Kiener, Stryk, 2010). Also interaction between &elwold devices from different
manufacturers and different generations becomesual practice (e.g. PC, TV, mobile
phone, climate control, etc.). This refers to slbedaambient intelligence paradigm,
which describes electronic environments that anesibke and responsible to the
presence of people. In an ambient intelligence dyatévices operate collectively using
information and intelligence that is hidden in thetwork connecting the devices.
Lightning, sound, vision, domestic appliance, armspnal health care products all
cooperate seamlessly with one another to improgedtal user experience through the
support of natural and intuitive user interfaceartd, Wichert, 2009).

A common heterogeneous colony arrangement is te bae member with more
expensive computing hardware. That robot servethe@solony leader and can direct
others, less intelligent robots, or it can be uksedspecial situations. The drawback of
such design is that failure or destruction of teader will prevent the team mission
from being accomplished.

Aforementioned drawback is eliminated in highlytdimited robotic colonies,
where each individual robot is independent, altitobugghly specialized, unit which
selects tasks to perform by itself according to gsals, internal state and/or
environment. Such colonies are capable to estalskgroups for particular tasks and
then rearrange the groups when other tasks are nelerant.

Despite increased design and production costs (eabbt class should be
designed and produced separately) heterogeneoust roflonies have several
advantages over homogeneous colonies describew.belo

v Fault tolerance — the ability of the robot colomyrespond to individual robot

failures or failures in communication that may aced any time during the
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mission. The colony as a whole is able to compistanission to the greatest
extent possible in spite of any single-point faluiParker, 1998b). A critical

phase of fault tolerance is the ability of the systto diagnose the correct failure
state. (Parker et al., 2004). Fault tolerance lgsumlproved using such methods
as dynamic task allocation (Duffie et al., 1988)self-stabilizing (J. El Haddad,

S. Haddad, 2004).

v" Robustness refers to its ability of the heterogasgobot colony to complete the
mission even in cases of certain failures. Robgstieobtained because of highly
redundant solutions available in such colony. Caltifunctionality of the system
is distributed over many simple units, thus anyh&fim is easily replaced in case
of failure. Also missing functionality can be obtad by combining functions of
other units. The mission itself could be solveddtally different way in case if
some functionality is unavailable (Hazon, KaminkRA0p8). Heterogeneous robot
colonies demonstrate high degree of adaptively.

v High versatility, which demonstrate heterogenealst colonies in performing
complex tasks. Due to dynamic task allocation amibregindividual robots, the
colony as a whole is able to perform wide rangeoohplex tasks (Simmons et al.,
2001). Emergent behavior of the colony is not leditto the functionality of
particular robots, but is obtained by combining@ierfunctions.

v Increased utilization of particular componentsh# tobotic system is the aim of
several optimization investigations (Stoeter et 2002; Dias, Stentz, 2003). The
required capability of the colony to perform camtdunction can be precisely
calculated based on mission specification and reaoicy requirements. Thus it is
possible to plan behavior of the colony in such whgt particular functions are
utilized almost for 100% of time, contrary to horeagous colonies where the
functions (components) are always available forotepbut are used only on
demand.

v High performance of the colony in finding the sautis achieved due to massive
parallelism. The colony of robots can dynamicalmpose subgroups working
on particular tasks, many of which can be perfornmegarallel. Thus a whole
system can adopt its capabilities to demands ofdnent stage of the mission.
Various aspects of heterogeneous robot colonies alezady briefly described in

previous chapter. This includes control architeesursuitable both for homogeneous

and heterogeneous colonies. One of the most igatetl combination of robots is
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autonomous air and ground vehicles (Grocholsky.e2@06). Another special case of a

cooperative, heterogeneous colony of robots arsupéal robots (Murphy, 2000Db).

1.3.Formal analysis problem of specification of multi-obot system

Previous sections describe various control aspafct®botic systems and their
development peculiarities. This section is intentiedhow current research directions
in the field of robotic colonies and address thabpgm solved in current thesis.

1.3.1.State-of-the-art of multi-robot research domain

Multi-robot research domain has progressed sint ifnvestigations aimed to
develop approaches to control multiple robots &t shhme time. Leading groups of
researchers have distinguished several researclidiions in multi-robot domain
(Arai et al., 2002; Garnier et al., 2007). This jpfea provides a review of most recent

researches done in these directions and in the-mblbt domain as a whole.

Biological inspirations

A lot of features of multi-robot systems are insgitby biological analogues. This
includes behavior and communication models foniialdial robots, as well as emergent
cooperative performance of a whole robot colony.

The most common application of biological knowledgéehe use of the simple
local control rules of biological societies (e.gtss bees, birds, etc.) to develop similar
behaviors in cooperative robot systems. Reseaiohéss direction have demonstrated
the ability of multi-robot system to flock, dispersforage, and follow trails. The
dynamics of ecosystems has also been applied toetelopment of multi-robot teams
that demonstrate emergent cooperation. Behavibigbfer animals such as wolf packs
also has been used in researches, especially Bajur-prey systems modeling
(Madden et al., 2010).

Most recent researches inspired by biological systelemonstrate advanced
methods used for cooperative control of robot ce®enOne of the widely investigated
topics is self-organization of distributed multbat systems. When the number of
robots becomes large, traditional approaches #gtan a centralized management of

the robots’ activities and on excessive informatexthange rapidly reach limits, for
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instance, because of the risk of individual failereof limits in the communication
bandwidth.

Nouyan and his colleagues investigate the conditionder which multi-robot
system can “emerge” in an intelligent system (Nouga al., 2009). The research is
aimed to development of effective teamwork orgamra using self-organizing
processes, which is typically demonstrated by bvestes.

Ducatelle and his colleagues address self-orgaoizapproach to heterogeneous
robot swarms (Ducatelle et al., 2010). The key coment of their approach is a process
of mutual adaptation, in which some robots exeqgeuctions given by others, and at
the same time regulatory robots observe the behadfid'workers” and adopt the
instruction they give. The result of research shibat that this process allows the
system to find a solution in a cluttered environinen

There are researches related to so-called digwahbdnes (Hamann et al., 2010;
X. Li et al., 2010). The bio-inspired reaction-difion mechanism of hormones is used
to control actions of single robot in cooperativevieonment. By the regulation of
hormones, robots adjust their behaviors in time am@rove the ability of self-
organization.

As there is an increasing interest for househobwbt® observed, the development
of sociable, communicative humanoid robots beconaetual research topic.
Researchers endow robots with expressive non-vdsbhbhviors, such as gestures,
which are typical for high animals (Salem et a01@). Results demonstrate the ability
of humanoid robot to produce synthetic speech apdessive gesture at runtime, while
not being limited to a predefined repertoire of anactions in this.

Another example of inspiration from high animalsirflans in fact) is RoboCup
challenge. The official objective of it is as folle: “By mid-21st century, a team of
fully autonomous humanoid robot soccer players|shad the soccer game, comply
with the official rules of thd=IFA, against the winner of the most recent World Cup.”
(RoboCup, 2012). The challenge promotes new relsearia the directions of robotics

and Al, by offering publicly appealing, but formlala challenge.

Communication

Communication in multi-robot systems has been stlidixtensively since the
inception of distributed robotics. Early researcemonstrated univocal benefit of the

communication for the performance of the systemlidi8aArkin, 1994). Distinctions
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between implicit and explicit communication are alfu made, in which implicit
communication occurs as a side-effect of otheastiwhereas explicit communication
is designed to convey information to other robatstloe system. Various interaction
approaches has been studied and compared in thextaf multi-robot systems:
interaction through the environment, interactiomotlyh sensing, and interaction
through communication (C. Jones, Matari2005). Since the benefit of the
communication has been proved, researchers focusnarel approaches for
improvement of communication effectiveness.

One of the actual directions in multi-robot comnuation focuses on
representations of languages and the groundinbesfet representations in the physical
world. Fundamental aspects of communication anduage are described in details
(Nolfi, Mirolli, 2010). Novel researches focus oms#raction from communication
realization aspects to the goals of communicatiggiiéro, Veloso, 2012).

Another significant direction is oriented on impeowent of fault tolerance in
multi-robot communication. This includes variouslf-séabilizing communication
protocols (J. El Haddad, S. Haddad, 2004) and #fhgos (Cornejo, N. Lynch, 2010).
Researches related to topics of limited commurooadilso could be referred as fault-
tolerance. Investigations demonstrate novel appes®en communication link chains
(Jung et al., 2010; Arrichiello et al., 2010) andactive robot behavior to
communication availability (De Hoog et al., 2010).

Because of increasing distribution of robots inrggay life very wide research
direction becomes essential — robot-human intemctiwhich also could be referred to
communication issues. Alami and his colleaguescatdd actual topics and challenges
in this direction (Alami et al., 2006). Researchiergestigate human-robot collaboration
and focus on such fundamental aspects as “what™ahdn” to communicate (Kaupp
et al., 2010). The problems of multi-robot/multirhan collaboration also has been
studied (Whetten, Goodrich, 2010; Lackey et al1130 Another novel researches are
focused on such aspects as safety (Haddadin, 20ilimplicit communication topics
in multi-robot/multi-human communication (Clairait, 2011).

Multi-robot communication research direction hasrbgrown widely, more
detailed analysis of present situation in in threaion, as well as future development
demands are described in (Y.-Q. Zhang, 2010).
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Architectures, task allocation and control

There is a direction in distributed robotics reshawhich focuses on the
development of architectures, task planning cajesil and control. It addresses the
issues of action selection, delegation of authoahd control, the communication
structure, heterogeneity versus homogeneity oftmlazhieving coherence amidst local
actions, resolution of conflicts, and other relas=iies.

Fundamental researches in this field were presemedection 1.2.1, which
describes basic control principles of multi-robgétems. First researches were oriented
more on conceptual realization of multi-robot cohtwhile novel investigations cover
more general aspects of intelligent control.

One of the widely investigated aspects is faukitamhce of multi-robot system.
Novel approaches are based on sensory informatialysis for fault detection
(Xingyan Li, Parker, 2008). Methods from the fieldartificial intellect are widely used
for information processing (Azuma, Karube, 2010rtégal, Rocha, 2010).

Due to the increasing processing power and finesiag capabilities of robots,
researchers are able to deploy robot coloniesunkmown, dynamic environments. The
exploration of an unknown environment itself is ldraging task, especially if the
terrain have complex morphology (Renzaglia et 2011). Researchers also consider
environments that are hazardous for robots (Schweigal., 2011), which means that
there are adversarial agents in the environmemgrny disable the robots or that some
regions of the environment tend to make the rofatsAlso world modeling facilities
have been progressed. Novel methods allow robotsutiol the model of dynamic
environment in real-time using their own limitechseg, known models of actuation,
and the communicated information from others (@adti al., 2010).

The issues related to task allocation within ratmonies were actualized because
of increased processing power and capabilitiesmgement more complex behavior.
Novel researches in this direction include sucheetspas decomposition of global
mission into tasks for individual robots (Francesaal., 2011) and subsequent
synchronization of these tasks (Karimadini, H. 12010), task allocation strategies for
unknown and dynamic environments (Jeon et al., 201Jain et al., 2011).

Successful application of robot colony depends ftectve planning of its tasks.
Novel researches demonstrate applications of varf@anning approaches for such

facilities as path and task allocation planninguy&ftg et al., 2010; Jolly et al., 2010),
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teamwork and learning planning (Veloso, 2012), piag in large scale colonies
(Velagapudi et al., 2010).

Another important aspect of robot colonies invedBg in recent years is
maintenance features. Many researchers have foausealitonomous mobile robots
because in the field of industrial automation eacibot is required to work
autonomously in response to demands given on sitevever, robot failures and
maintenance might affect fault tolerance and peréorce of robotic systems (Satoshi
Hoshino et al.,, 2011). Also the behaviors of indial robots of the colony are

changing taking into account maintenance activitgesHoshino et al., 2010).

Cooperative performance

An essential and at the same time important doaci multi-robot research is
cooperative performance related features. It iresueariety of algorithms, methods and
approaches for cooperative localization, mappind) @ploration, object transportation
and manipulation, motion coordination, etc. Thisediion is widely represented by
researches and novel results, which consider Inppinovements of existing methods as
well as completely new approaches.

Localization, mapping and exploration field is reggnted by such researches as
indoor and outdoor localization (D. Kim, Choi, 2(llalgorithms for retrieved
localization information processing (Elor, Bruckate2010; Prorok, Martinoli, 2011),
approaches for massively distributed exploratioalld@rt et al., 2010) and others. Also
there are investigations focused on improving deliigent localization (Pinheiro,
Wainer, 2011) and on novel paradigm developmentigiéann et al., 2010).

Multi-robot manipulation and transportation taslssiaily require high degree of
cooperation between robots and coordination ofrgolwecomes nontrivial if more than
2 robots are involved into process. Recent researdemonstrate novel methods for
intelligent control of manipulation and transpadat tasks (Simzan et al., 2011; Y.
Wang et al., 2011). Also relatively new directi@n3D transportation which is usually
implemented using aerial vehicles (Michael et aD11). Also improved design of
actuators is proposed by several researchers (Gaheplal., 2011).

Motion coordination field includes various methdds navigation (M. Yang et
al., 2010) and formation control (Beer et al., 2Z0B0Chen et al., 2011; de Denus et al.,
2011) of multi-robot system. Also researches foensfundamental problems such as

describing the formation rigorously in a mathenstimanner (Ma et al., 2011).
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Self-reconfigurable robots

Relatively new direction of modular robotics hasatced from proof-of-concept
systems to physical implementations and simulatioftse field of modular self-
reconfigurable robotic systems addresses the defigrication, motion planning, and
control of autonomous kinematic machines with J@da morphology. Beyond
conventional actuation, sensing, and control typicdound in fixed-morphology
robots, self-reconfigurable robots are also abldeliberately change their own shape
by rearranging the connectivity of their parts mler to adapt to new circumstances,
perform new tasks, or recover from damage (Yinm.e2807).

Technological exploitation of self-reconfigurablebots provides different
practical advantages not only for advanced robotieg also for autonomous and
adaptive systems in general. Three most importdvdirgages are extended reliability,
advanced adaptivity and self-evolving propertiesriboach and his collegues describe
most actual research dirrections in the field df-onfigurable robots and introduce
current challenges (Kernbach et al., 2010).

Researchers consider advantages of homogeneoushetedogeneous self-
reconfigurable robotic systems (Kernbach et all,1220Homogeneity and heterogeneity
provide different advantages and represent two sifgopoints on the scale of
universality and specialization. For instance, hgemeous elements can be easily
replaced, such systems are more scalable. Howelvetreaogeneous system benefits in
computational and energetic aspects, as well ediability of the whole system.

Papers are presenting practical application cosdeptself-reconfigurable robotic
systems. For instance, Sprowitz and his collegum&ed on Roombots project, which
aims on development of interractive, shape chanfiingiture (Sprowitz et al., 2010).

They deal with distributed control implementatiomdamentals for such systems.

Robot swarms

Swarm robotics could be selected into separataresdield, which focus on a
coordination of large numbers of relatively simpbbots, in contrast to ordinary multi-
robot systems. Swarm robotics is a novel approabilthwtakes its inspiration from
social insects.

There are scientific papers reporting results imows aspects of the swarm
robotics, like emergent behavior of the swarm (Amiaet al., 2010Sahin, Winfield,

2008), physical design of swarm robots (Seeni, fech®2010) or reconfigurable
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systems called multi-robot organisms (Kernbachl.e2810). Robot swarms are being
applied in various fieldsS@hin, 2005), including medicine (Davies, 2010; Raggo et
al., 2010), everyday life (Hansen et al., 2010aB6gwnetr et al., 2010), urban search and

rescue (Wong et al., 2011) and others.
1.3.2.Development trends in multi-robot system researchamain

Most of the researches in multi-robot systems fieddl a trend to focus on the
development of working solution for a particulaska For now there are available
control architectures, communication strategiesapproaches developed to use in
multi-robot system (Burgard et al., 2005; Nouyanakt 2009; Rybski et al., 2007).
From the other side there are relatively few formaldels and analytical solutions that
describe specific type of problem (Gerkey, 2003).

Because of aforementioned assumptions the analyssonomic benefit and/or
structural design of a multi-robot system are rexfgrmed. Next chapters show several
adjacent research directions dealing with thesedsp

Mission implementation using heterogeneous robougrcan reduce costs by
increasing utilization of particular componentsralbotic system. In this case the space
of possible solutions expand dramatically due tev d@mension of parameters — types
of robots — added to the scope of choice of ropeti$ication and their number in a
homogenous group. The same combinatorial explossortypical for almost all
combinatorial tasks, like chess solving or trawngjlsalesman problem. Therefore often
just several intuitive solutions are analyzed ahd best of them is considered as
optimal. The author aims to search the optimumhenfull space of solutions applying
formalization of the specification, feasibility dysis and computational power.
Through proposed procedure optimum is found in &dlution domain eliminating
application of suboptimal solutions. The optimipatiprocedure is divided in eight

consecutive steps.
1.3.3.Industrial robot selection problem

There are relatively few formal approaches inteniednalyze various aspects of
robotic systems from economical and/or industiialipoint of view. Although, these
aspects are being developed in the field of intAlstutomation and the researches are
focused on an industrial robot selection problem.

63



The base for this direction is laid in the fieldmtiltiple-criteria decision analysis,
which is a sub-discipline of operations researcht tbxplicitly considers multiple
criteria in decision-making environments. Typicatlgeals with conflicting criteria that
need to be evaluated in making decisions. Multglteria decision making discipline
started in early 1960s and there have been impgathrances in developing algorithms
and tools for decision making (Zionts, 1979; Oppemter, 1978; Yakowitz, 1993).
Modern multiple criteria decision analysis field isdependent research direction
providing various approaches to other fields (Sak#s) 1998).

Economic benefit of an industrial company dependfcethought deployment of
an industrial production system. Robotic systenesumed to increase effectiveness of
the production system providing variety of autormatapproaches. Industrial robots are
used extensively in advanced manufactures to perfepetitious, hazardous tasks with
precision. The successful deployment of industri@botic system increases
effectiveness of production system and opens patdot improving economic benefit
of company. Industrial robot selection problem d&for the process of selecting the
most suitable robot among many alternatives in®habots' performance in a number
of key areas. Various quantitative methods haven [preposed as an aid to selection
decision on the choice of robots (Khouja, 1995kRay 1999).

Robot selection problem become actual at the same when robotic systems
have spread in the industries. In 1980s numbemwadstigations was performed in order
to develop evaluation procedures for industrialoteb(P. Y. Huang, Ghandforoush,
1984). Advanced decision support and robot evalnathodels were proposed during
that period (Imany, Schlesinger, 1989; Knott, RghE382).

Special systems were developed to support decisiaking in robot selection
(M. S. Jones et al., 1985). Offodile, Lambert (19&kveloped computer aided
procedure for industrial robot selection, which @& an opportunity for application of
complex and more intellectual evaluation modelscc8asful application of these
procedures was demonstrated in various fields @@&pJohnson, 1990).

Aforementioned computer aided decision supportesystand evaluation models
evolved further and utilized various approachesfaxjacent research direction. Some
of them are described below.

The operational competitiveness of a productiont where resources are
transformed into outputs of goods and services v&rg important component of its

overall competitiveness. The efficiency with whidhese activities are carried out
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determines the operational competitiveness of adymion unit. (Parkan, 1994)
indicated the necessity of a reliable rating sysianorder to control and improve
operational competitiveness. He worked on the mhoee for transparent and robust
evaluation, which could reflect prevailing managkenperspectives and competitive
priorities.

Parkan & M.-L. Wu (1999b) have made a valuable reffo this direction and
proposed the operational competitiveness ratintysisgd OCRA) method for evaluation
of the performance of production units. They denras the application of this method
in variety of industries such as finances (Parkkh;L. Wu, 1999a), software
development (Parkan et al., 1997) and others. éir ttlmethod, ratings are used for
measuring the performance of production unit. Rgtidepend upon the assumptions
made by the modelers for the performance evaluatiodel, and thus can be somewhat
subjective. The problem with the OCRA method ist thl the costs (inputs) and
revenues (outputs) must be measured in a singlsureraent since the cost/revenue
ratios must be known in this model. The OCRA metassumes that the category with
a higher cost will receive a higher weight, othieinggs being equal. In contrast, (S.
Wang, 2006) contradicts their results and usingissd\examples show that the premise
and assumptions of OCRA method are flawed and iohval

Neely (1999) show the importance of performance smesment in the
management of any organization. He contributednwvestigation of the design of
performance measurement system (Neely et al., 2800)offered a research agenda
(Neely et al., 2005). The analysis and practicapliaptions of performance
measurement methods is widely known in researchraamty (Tangen, 2004).

Aforementioned performance or competitiveness ateln methods are used in
combination of decision making tools in order tdenpret evaluation results in an
appropriate way. Decision-making problem is thecpss of finding the best option
from all of the feasible alternatives. In almodt @lch problems, the decision maker
wants to solve a multiple criteria decision makprgblem. Multiple criteria decision
making may be considered as a complex and dynamaegs including one managerial
level, which defines the goals, and chooses tha fioptimal” alternative. One of the
multiple attribute decision making tools widely dse industrial robot selection is
called technique for order preference by similatitydeal solution (TOPSIS). The main
principle of TOPSIS states, that the chosen altemahould be as close to the ideal

solution as possible and as far from the negatieadi solution as possible. The ideal
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solution is formed as a composite of the best perdmce values exhibited by any
alternative for each attribute. The negative-idadltion is the composite of the worst
performance values. TOPSIS is being constantly avgnt and new applications of its
extensions are being developed in variety of fieflgeh as fuzzy environments
(C.-T. Chen, 2000; lzadikhah, 2009; Jahanshahlootfi,L2006), interval data
processing (Jahanshahloo, Lotfi, 2006), robot sele¢Chu, Y.-C. Lin, 2003).

Despite solid research base described before, reddettion problem is in the
agenda of current researches, and new methodspambi@s and improvements are
proposed. Researchers give special attention tdinea automation systems and robot
selection for them (Chatterjee et al., 2010). Aprottiirection of researches deals with
fuzzy methods, which bring more intellectuality tobot selection domain. Papers
propose robot selection method based on fuzzy migrdKoulouriotis, Ketipi, 2011),
decision models based on fuzzy linear regressiars@k et al., 2011). Others develop
extensions that allow application of various methad fuzzy environments (Deuvi,
2011).

The development of decision making procedures igopaed within the
researches related to robot selection. Novel mettawd being proposed for decision
making support in general manufacturing environmé¢Rta0, Patel, 2011; Chakraborty,
2010), as well as for specific robot selection jpeoh taking into account subjective
preferences (Rao et al., 2011) or applying nonstahdpproaches (R. Kumar, Garg,
2010).

Aforementioned analysis of the literature showd tiedot selection problem is
actual research domain. Taking into account petigisa of the industry the
investigations consider selection of the best smudmong the options available on the
market. Within the thesis the author threats tkia @rawback and supposes that for the
industrial robots the level of details of analys# be refined down to the selection of
functional components of robots like mechanic awhgel drive, vision system and
similar ones instead of ready-made solutions. Tihayais and development of the

author’s proposed approach is described in nexiosesc
1.3.4.Coalition formation problem in multi-agent researchdomain

Robot selection problem domain is not the only aede direction dealing with

complex multi-attribute optimization and decisioraking. Another similar direction
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dealing with complex combinatorial consideratioascoalition formation problem in
multi-agent research domain.

The coalition formation is a term from sociologyeaming the situation where
coalition parties join their resources in order gain outcomes (Gamson, 1961).
Coalitions occur when three or more persons arelwed, two or more act as a unit
against at least one other, and the joint actiaayces a result superior to any result
possible by individual action (Shaw, 1971).

Originally coalition formation between agents wasidged in the scope of
economic processes (Kelso Jr, Crawford, 1982; Kirre& al., 1986). Advances in
computational intelligence brought new approaches methods. Among them was
agent based systems used for advanced computatiwh,the coalition formation
between agents become one of the priority direstion

Many researchers focused on coalition formatioroasa control approach for
multi-agent systems (Zlotkin, Rosenschein, 19941d8alm, Lesser, 1995; Shehory et
al., 1998). The number of methods was developedtdsk allocation via coalition
formation (Shehory, Kraus, 1995; Shehory, Kraus98)9 Eventually coalition
formation has become a key topic in multi-ageneaesh domain, as a result various
classifications were proposed (Lau, L. Zhang, 2003)

Scientific papers reported application of intelhgenulti-agent systems in variety
of fields. Multi-agent systems in general and daali formation of the agents were
widely used in economics for trading applicationéefng et al.,, 1999; Lerman,
Shehory, 2000) . Another application direction afltmagent systems is optimization
and planning in various domains. The examples d&lthe applications for power
transmission planning (Yen et al., 1998; Contretas., 1998; Zolezzi, Rudnick, 2002).

There is a direction in research area of multi-aggatems which aims to finding
optimal coalition of the agents for particular nnigs (Service, Adams, 2010). Similar
approaches can be transformed to robotics problemadh (Vig, 2008). However the
coalition formation is performed on operationalndtime) level, while authors propose

the optimization approach for design stage of atiolsystem.
1.3.5.0Optimization of specification of heterogeneous mukrobot system

For a customer of multi-robot system implemente@dadorm certain task one of

the major indicators are costs of such systemase ©f other criteria they usually can
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be transformed to be measured as costs or benefisits of money. The number of
robot classes, as well as the specification oftions of each class and the number of
instances of each class in the system are the pteesnof the system that could be
adjusted in order to optimize the costs of theesystin practice mentioned parameters
are usually predefined and optimization potensialot assessed. As a result multi-robot
system becomes unattractive for the customer beaafuack of clear positions of costs
and predictable results of adjusting the parametesgstem.

Clearly, the required behavioral performance in igery application dictates
certain constraints on the physical design of tii@ot team members. However, it is
also clear that multiple choices may be made ingdesy a solution to a given
application, based upon costs, robot availabibkyse of software design, flexibility in
robot use, and so forth. Designing an optimal rabaim for a given application prior to
deployment requires a significant amount of analgsid consideration of the tradeoffs
in alternative strategies. The idea of the optitealm design is to engineer the best
robots for a particular application in advance, d@hdn apply those robots to the

application with a certain solution strategy in thii®arker, 2003).

1.4. Summary of the section

The analysis of actual trends in multi-robot reskdreld reveals that multi-robot
systems are not being investigated in the contéxtsdormal design and evaluation.
The author clearly sees potential for improving tirabot system at the design stage of
the system if its specification is evaluated ankkcted according to defined criteria.
Adjacent fields of research are identified dealwith industrial robot selection problem
and with coalition formation problem in multi-agesyistems.

There is a lack of investigations aimed to analgsid prediction of utilization of
various functions of the multi-robot system. Prdpeatesigned system requires fewer
investments from a customer and at the same timis itapable to demonstrate
performance and fault tolerance required for cotmpdethe task.

The behavioral decomposition used within reacti@bot control architectures
improves results and if properly implemented letdslecreased response time of the

control system and opportunity to use it for realet applications.
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2. PROCEDURE FOR OPTIMIZATION OF SPECIFICATION OF
MULTI-ROBOT SYSTEM

As it was concluded in previous chapter membemswti-robot system and their
functions usually are selected intuitively from @efale options, without explicit
proofing of the choice. The author found that ecoiwoefficiency of the multi-robot
systems is barely investigated in general and dméiguration optimization problem in
particular (see 1.3).

This chapter introduces the author's proposed ambro for solving
aforementioned problem - specification optimizatiggmocedure. First of all
fundamental terms and the optimization task arenddf including parameters, criteria
and constraints. Then conceptual model of solutopresented in details. Finally the
steps of specification optimization procedure ameoduced, which are described in

details in subsequent chapters.

2.1. Definition of multi-robot system specification

As stated before the research made within the ghiesrelated to analysis of
configuration of multi-robot system. The authoroalsses term specification with the
similar meaning. So first of all the object of raggh should be explicitly and clearly
defined.

Consider an autonomous robot system, which consfisisigle mobile device that
is able to get some information about the enviramnasd is able to interact with it.
Such systems have a bunch of different parametetscould be used to describe it.
Mechanic engineer would describe it by using suattameters as wheelbase, track, type
of gearbox, bearings, etc. Electrician would déscriypes of used links, boards,
amperages, voltages, etc. From IT specialist’s tpofrview most important features
would be architecture of used software, algorithspgcial know-hows, etc.

Now consider the system that consists of severdilmaobots. In addition to
recent parameters the system could be describeterms of composition and
organization of a robot group. The system could sinof identical robots
(homogeneous) or of different types of robots (fugeneous). The control of the

system could be organized rather in centralizedisiributed manner. Also the behavior
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of members of the systems could be cooperativeoanpetitive against each other
depending of application peculiarities.

All aforementioned parameters are precisely desctite system, but most of
them are highly specialized and are useless fociats from adjacent fields. Also
many of them depend on each other, for instancenef parameter is defined, that the
other one should also be defined, or should beregghdSuch situation complicates the
creation of formal approaches for processing aralyars of the system. The author
uses simplified model of parameters used for ddimi of robotic system that is
described in details in section 3.1 of the thesis.

The set of parameters of the system uniquely defiaesystem at a given level of
details. The author uses a term specification ®fstem to state such set of parameters.
Specification is a detailed description or assessnuoé requirements, dimensions,
materials, etc., as of a proposed building, magtoridge, etc.; a particular item, aspect,
calculation, etc., in such a description; a dethescise presentation of something or of
a plan or proposal for something; a document deisgrihow some system should work
(Specification, 2011). In the scope of robotic eyss this term is used to name a
process of robot’s task definition — mission sgeatfon (Ulam et al., 2010; Endo et al.,
2004). Others use the term to declare detailed dbascription of robot controllers
(Zielinski, Winiarski, 2010).

The author uses definition matching aforementionptions. Thus, within the
scope of the thesisspecificationof robotic system is a set of parameters thatuelg
specify the system. If any of parameters from #techanges, then such specification of
system is considered as different in comparisanitial.

Thereby different specifications are obtained vagyparameters of the system.
Since a specification is a set of all relevant peaters of the system, it could be used to
formally analyze the system as a single entity.

In the scope of heterogeneous multi-robot systéraspecification defines types
of robots (classes) as well as a number of instaateach class of robots in the system.
An important feature should be mentioned: if twedfications define the same types
of robots but the numbers of instances of theseotsolare different, then the
specifications (and the systems themself) are densd as different.
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2.2.Optimization task definition

According to the definition, amptimizationis a mathematical technique for
finding a maximum or minimum value of a functionsgfveral variables subject to a set
of constraints, as linear programming or systenasyais (Optimization, 2012).

Optimization taskstands for the task of finding the best soluthjch includes
selection or development of mathematical descmptfmodel) of possible solution
domain, mathematical definition of optimization teria and finding the optimal
solution.

Within the scope of the thesis the optimizationktas aimed to find best
specification of a multi-robot system maximizing @jective function. This means the
searching for an optimal solution in a full spadepossible solutions. There are no
limitations regarding heterogeneity of the speatilen. Therefore the optimal
specification can correspond to homogenous or bgésieous multi-robot system. For a
heterogeneous multi-robot system possible solutindside all combinations of robot
types and number of their instances.

Aforementioned objective function is analyzed itaile in following chapters. In
general it depends on a mission for robotic sysdedhon results that user is expecting
from the optimizationMission stands for a global goal of a robotic system, Wwhic
performs certain tasks thereby achieving the gddhckenzie et al., 1997). Thus
optimization of a specification of the robotic st is performed subject to defined
mission. It is worth mentioning that the robotics®m should be able to complete the
mission, because otherwise it is not reasonableottsider the optimization of the
specification.

The goal of optimization is defined by user anddé@pends on his desire.
Following chapters explain this aspect in detditsgeneral user may have an aim to
reduce the expenses of a robotic system, or teaser productivity (mission fulfillment
speed) or even lower ecological impact of produrctio

The introduction of current section stated that d@ima of the thesis is related to
analysis of various specifications of a multi-rolsyistem and to selection of most
suitable option for particular case. In other wotlle aim of thesis is to develop a
method for specification optimization of multi-rabsystem. The author uses the term
“specification optimization” in the meaning of th@ocess by which the optimal

specification of multi-robot system is selected amother less suitable specifications.
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Thus the specification itself is not optimized i@ngentional sense of function
optimization. It is closer to meaning of the sdlattof a best element from some set of
available alternatives and therefore the solutemmot be obtained analytically. Various
specifications of multi-robot system are analyzed the most suitable is selected in the
process of optimization.

At the same time the procedure does not guarameiad global optimal solution
due to its complexity. Although, various approaches used through the procedure in
order to iteratively guide search towards bettéutsm.

An optimization process implies thaptimization criterion, parameters and
constraints are defined. Acriterion of an optimization task is a mathematical function
which is used to evaluate values of variables witknt to assess solution candidate
according to defined goal.

Before selecting criterion for specification optaaiion of multi-robot system the
usage peculiarities of the proposed method shoallddscribed. Robotic system has a
wide range of parameters that are about to be g@dnlt includes almost all aspects of
robotic system, such as physical design, navigatiask allocation, communication,
planning, control strategy, and a lot of otherserBhare separate research directions for
each of these, and a lot of successful results aleeady achieved (see 1.3.1 for more
details). Any of these directions has actual topgarsseparate thesis. However these
topics are extremely technical and are barely cbeldseful for end user of the system.

In opposite, the thesis is aimed to the analysishef multi-robot system from
customer’s perspective. Because of that severahgdsons are declared. First of all,
implementation of particular components of robatystem is not considered in the
scope of specification optimization. For instanéehe system is capable to perform
task planning, then it is assumed that the usathpig algorithm is suitable to perform
the planning as well as that the algorithm is thestbfor the particular case in
comparison with other algorithms. In other words thontrol and coordination
including communication are ideal and works withdatay. Such approach allows the
analysis to be focused on parameters of the whabetic system, rather than on
parameters of system’s components.

The optimization of specification is aimed on matlag¢ical evaluation. Thus non-
quantitative parameters of the robotic system atecansidered in scope of the thesis.

For instance, an appearance of robots or theiets#h view is out of the scope.
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Thereby there are a limited number of optimizatioieeria which correspond to
aforementioned scope. In general, the parameterthefrobotic system could be
associated with a number of categories.

v' Time related parameters, which include any indisatehich could be expressed
as a time. This category includes such parametetsme, required to perform a
mission, downtime, task switching speed, produtsti\atc.

v’ Parameters related to energy consumption indigagevalues that are consumed
by robotic system during the mission. This includelectricity and fuel
consumption, as well as raw material consumptiompfoduction and others.

v Other parameters include such quantitative paramess CQ output, soil
packing, noise, etc.

As it is shown above, multi-robot system has a hurfcparameters subject to the
optimization with quite different measurement unitey order to demonstrate
specification optimization method in the scope lté thesis the author tend to select
simple and understandable criterion, while at Hraestime ensure its universality.

Bearing in mind all mentioned features the authas tecided to use costs based
optimization criterion. It is confirmed by sevesdvantages. First of all costs are quite
univocal indicator which is also understandablerfon-technical user. For a customer
(businessman), ordering robotic system, the exgestists for purchase and running the
system are almost always the most significant anaihgr indicators. If the customer
does not have enough funds for the system, thés uinreasonable to evaluate the
system by other criteria.

Secondly, the costs are very universal criteria @nibst any other indicators of
the system could be expressed as costs. For exatin@léme required to carry out the
mission can be expressed as costs by introducipgnses rate. A fault tolerance of the
system is converted to costs by estimating the resgee which will be present if the
system would fail.

Costs are poorly suitable for evaluating non-techlnaspects of a robotic system.
This includes ethical, esthetical, ecological issuEor instance, it is impossible to
express working environment impact on employee’althein terms of costs. It is
inhumanely to evaluate such indicators. Howeversit@pe of the thesis is limited to
autonomous robotic systems, thus employment issaes not considered as
corresponding. A robot is a piece of hardware wluah be easily replaced in case of

defects without any ethical implication. Also thesis is focused on industrial robotic
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systems, and they are not considered to be usedcim areas as healthcare, hazardous
production, nuclear power generation and othersisTime ecological impact is not
expected to be greater than conventional indusipptoaches. Among other things the
ecological impact of the robotic system could baleated (e.g. soil packing), but it
directly affects the benefit of the customer ngfi@bal ecological situation (if a farmer
have packed the soil a lot by heavy machines, lieewell get less crop, as a result less
income).

There are several positions which should be corsitdehen evaluating a robotic
system in terms of costs. These include the expgerezpiired to purchase the system,
the expenses required to run the system, as walhyasndirect expenses, such as fault
recovery expenses, maintenance, depreciation,Ta&.author uses the total costs of
ownership as a universal criterion for demonstgatipecification optimization method.
By the definition, total costs of ownership is tieal costs of owning and using a piece
of equipment such as a computer, taking into adcoo@ price of the hardware,
software, maintenance, training, and technical stgpat may be needed (TCO, 2012).
Total costs of ownership (TCO) is a financial estien whose purpose is to help
consumers and enterprise managers determine dinelcindirect costs of a product or
system. It is a management accounting concepttrabe used in full costs accounting
or even ecological economics where it includesaamsts (Total-cost-of-ownership,
2012). Detailed analysis of TCO estimation for hegeneous multi-robot system is
provided in sections 5 and 6.

Parametersof the optimization stand for model values whiale about to be
optimized. In other words these values are setstarh values, which maximize /
minimize an objective function (criterion), whicls iTCO in this case. In case of
specification optimization for multi-robot systehetspecification itself is the parameter
for optimization. In particular number of robot &g (classes), their functions and
number of their instances used in the multi-rolystesm are being optimized.

Optimization constraints define boundaries for objective function in whiith
should be optimized. Constraints also could berpnéted as conditions that should be
fulfilled in order to consider an optimization sessful. For specification optimization
of multi-robot system constraints are primarilyidetl by user according to expected
application peculiarities of the system. These @¢daotlude such conditions like time
limits, mobility requirements or even communicatistrategies. Level of details of

constraints depends on the background of user amdary from abstract description of
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system down to detailed specification of requir@dplementation. This topic is
discussed in details in chapter 3.1.

2.3.Concept of specification optimization solution

Previous chapters define a specification of hemegus multi-robot system and
analyze optimization criterion, parameters and tairgs. This chapter provides an
analysis of conceptual model used for specificatiptimization.

The model proposed within the thesis is based oonrdposition approach. By the
definition, decomposition is a process of decommpsivhich in turn means to separate
or resolve into constituent parts or elements (Dgmwse, 2012). In mathematics it
means to express in terms of a number of indepérsii@pler components, as a set as a
canonical union of disjoint subsets, or a vectoto irorthogonal components
(Decomposition, 2012).

An implication of using decomposition approach witlthe thesis hides in the
idea of decomposing requirements for heterogenenuls-robot system into simpler
units, which are subsequently analyzed in formahmea. The system is built of the
units according to the results of analysis (comgadsem them). Thus the approach
intents that the requirements are decomposed, zethlgnd then composed back to
single system. This corresponds to mathematical hodet called functional
decomposition, which is used to resolve complextional relations into its constituent
parts in such a way that the original function barreconstructed.

Before proceeding to description of concepts séwgeaeral terms used within
the thesis should be defined. First of all thissionis defined as a set of goals to be
achieved by heterogeneous multi-robot system. lillcdoe defined as simple or
complex goals. The mission could define some gldbajet for the system (e.qg.
eliminate pollution on site) as well as simple &gk.g. move to pollution origin,
perform cleaning, and return back to service sitauhloading / recharging). User of the
specification optimization procedure defines thessiun and the level of details is
selected by him taking into account applicationufiacities of the robotic system as
well as desired optimization precision.

Proposed specification optimization approach fotettgeneous multi-robot
systems is based on several concepts. The missiahd system is defined using the

list of componentsComponenstands for an abstract definition of ability (ftioa) of
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the system without an explicit specification of realization. It is an abstract entity
capable to perform some specific functionality. Mfitthe real system component could
be implemented rather as hardware element or saftwaodule, as well as a
combination of both.

Thus the mission is defined by specifying the &bgi which are required for
multi-robot system to successfully perform the sagkd complete the mission. In order
to facilitate user of the optimization approachwetl as to allow computational analysis
the components should be formalized. Definition fofmal entity comes from
mathematics and it pertains to manipulation of syi:without regard to their meaning
(Formal, 2012). For that purpose an advanced fleatson of components is used.

The list of components is used for defining theursgments for particular multi-
robot system in formal manner. Next, componentgyasaped together in order to form
agents. In generahgentis a functional unit of the system. Within thegiseagents are
considered to be mobile robots (e.g. transportbserver) or stationary units (e.g.
communication unit, warehouse). The term standsydween definitions used in agent
based software systems and is focused on robatiaitho It is fair to mention that agent
based software could be specified for mission oftimobot system but as a single
component without detailed description of its inmpéntation features.

Also the thesis is focused on such specificationsolti-robot systems which
imply that there is at least one mobile robot. Tdssumption is caused by two reasons.
Systems consisting of many stationary units areelyithvestigated in the domain of
multi-agent systems, where software agents areaictinag each other in order to realize
some desired functionality. Small number of mobibdots along high number of
stationary units defines research direction whighdifferent from the scope of the
thesis.

Finally a set of agents is selected to form a smiuSolutionis a specification of
heterogeneous multi-robot system, it defines tygfesgents (classes) and a number of
their instances used to carry out a mission. hdsessary clarify that agent concept
described before actually defines distinct typeagdénts, not a real instances of robots

and units. Graphical representation of the con@piwdel is shown on figure 2.1.
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Figure 2.1 Conceptual model of solution

In addition to relations between concepts figure ghows a simple example of
them. Components represent required functions efysiem without distinguishing
simple or complex ones. For example mobile basedbots (C1) and communication
hub could implement quite complex functionality,ilerstructural components (C2 and
C3) are very simple.

Agents could be represented by any possible comibmaf components. The
figure shows two mobile robots (A1 and A2) and istary unit (A3) which is
composed from a single component. In general, amponent could be used as
standalone agent, of course, if it is reasonale.eikample, implementing transporting
container as standalone stationary unit is doubtf@ngement.

Solution defines types of agents and the numbéheaif instances. Figure shows
single example of solution, which consists of twistances of A1 agent and of single
instance of both A2 and A3 agents.

In comparison to other similar researches (see3léhd 1.3.4) the thesis
introduces additional level of details for spedation analysis. New dimension of
parameters appears — components — which are adddéaetscope of selection of
specification of multi-robot system. Because ofttli®e space of possible solution
expand dramatically and combinatorial explosionbserved, which is also typical for
almost all combinatorial tasks, like chess solvimgtravelling salesman problem.
However the thesis is aimed on optimal specificagearching in full solution domain
using advanced optimization procedure in contrastomparison of limited number of
intuitively selected solutions. Refined level oftalks of considered parameters of the
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system opens potential to reach unique (well shiwad applicable solutions for
particular mission.

Solution forming from agents (and from components, general) implies
application of various rules and constraints. Maimpose of introducing the rules is to
allow formal processing as well as to limit scop¢he thesis away from marginal cases
(Komasilovs, Stalidzans, 2011). Next paragraphsrdesthe rules in details.

Rule 1 — Components of solution

The first rule defines the components of solutitirstates that all components
defined for specification optimization procedur@wll be used in the solution at least
once. The rule is derived from the concept of dgmmstiion approach which implies
that the mission is defined using components whrehrequired for its fulfilment. Thus
if the solution (specification of the system) does$ contain any of defined components,
then such system is not satisfy all functional remmaents (it is unable to fulfill the
mission because of lack of some functionality). réf@e such solution is considered
inappropriate.

This rule also affects the mission definition agmte. There is no doubt that only
mandatory components should be defined for theiomsand it also corresponds to
overall idea of specification optimization proceetuthe mission is defined without
designating its realization. As a result it is pblesto cover wider scope of possible

solution within optimization process.

Rule 2 — Number of components within solution

The second rule defines the number of componenthirwithe solution.
Conceptual model of specification optimization mdere imply, that the agents are
composed from the components but does not spdafintimber of components. Thus
each defined component could be used in any nuofbdifferent agent classes. Based
on this the number of applications of componentsisimited within the solution.

From the other side the components define only tfanality required for
particular agent without specifying its realizatidrhere is no sense to define multiple
components of the same type for the single agdmreby each component can be used

only once in particular agent.

Rule 3 — Instances of agents

The third rule deals with instances of agents. tAwas stated before, solution

consists of multiple agents, and these agents @reequired to be of unique class.
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Thus, multiple instances of any agent class coeldu®ed within solution. Also it is
worth to mention that it is not mandatory to uskepalssible agent classes within the
solution. This aspect is discussed in details atice 4.

Furthermore, during optimization procedure it isgble to get solutions, which
consist of same agent classes but differ by thebeurof their instances. Such solutions
are considered as different and are analyzed (ateyindependently.

2.4. Specification optimization development approach

Previous chapters define terms which are used mwithe thesis. Conceptual
entities used within specification optimization alefined as well. This chapter briefly
defines the most important steps of the developptimiation procedure and
introduces the structure of the thesis, which, @megal, describes the steps of the
procedure.

By the definition, procedureis the sequence of actions or instructions to be
followed in solving a problem or accomplishing akgProcedure, 2012). Optimization
procedure stands for the sequence of actions wdmeheeded to find the optima or
close to that value. Besides running an optimiratice procedure includes preparatory
steps and detailed analysis of results of optinomatuns. A formal approach is
proposed within the thesis, which is used for asialpf the functional and structural
parameters of heterogeneous multi-robot systemsfiexification), as well as for the
optimization of its costs taking into account cuséw’s criteria and peculiarities of the
multi-robot system.

The procedure provides a framework for finding bepecification of the
heterogeneous multi-robot system. It aims to odtsoéution searching in full solution
domain and provides methods to eliminate non-optsoéution domain branches on
early stages of optimization. For combinatoriallpems such approaches are required
in order to get results in feasible time.

Figure 2.2 shows basic flowchart of the specifmatioptimization procedure
(Komasilovs, Stalidzans, 2012b). It consists ob8secutive steps and can be executed
iteratively.

Step 1 First of all business requirements for multi-rolsgstem are defined by
customer (user). In other words he defines theiondsr the system (see 3.1).
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Step 2 Then mission decomposition process takes placehwimply the mission
definition decomposed in components, selection miingzation criteria, adjustable
parameters and constraints (see 3.2 and 3.3). édsopatibility analysis between
components is performed on this stage (see 3.5).

Step 3 Solution domain is analyzed in order to assessdtal number of possible
solutions (see 4.2).

Step 4 If the number of solutions is too high to evatuall of them, then proceed
to the step 5 (see 4.3). Otherwise one shouldgartts step 6.

Step 5 Heuristic algorithms are used to narrow the saapsonsiderable options
to the bunch of fittest solutions (see 5).

Step 6 Fine evaluation is performed using simulation®ider to select optimal
solution for particular mission (see 6).

Step 7 The results of the optimization process are amalyin a simulation
environment to find out the differences betweemrdasted fitness in step 5 and step 6
(see 6.3)

Step 8 If the differences are not acceptable then patersef initial evaluation is
tuned to meet the requirements (step 5) or it ssiiate to apply different decomposition

of the mission (step 2) and to execute the proeaedgain.
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Figure 2.2 Specification optimization procedure

The steps of proposed specification optimizatiaacpdure are analyzed in details

in following sections of the thesis.

2.5. Practical example for demonstration of specificatia optimization procedure

This chapter describes a mission for multi-robatesmn which is used within the
thesis as a demonstration example for proposedfispéion optimization procedure.
The mission was selected taking into account sefemtures.

First of all it has to be suitable for multi-roltstem in the sense that the mission
has to be feasible both for single robot and foltiple robots. Also any conditions, that
explicitly grant preference to any of solutionse amdesirable. For example, heavy

object lifting task has to be implemented by theugr of robots that is exactly capable

81



to handle heaviest object. Fewer robots (or siogle) will not be able to handle the
objects, while larger groups of robots will wastsaurces due to idle time.

Secondly, the mission has to be complex enoughakenoptimal solution not
obvious. At the same time it has to be simple aghmas possible in order to be
implemented rather in simulation or hardware ta the procedure. Also the mission
should provide sufficient dynamic environment imler to allow selection of solutions.
For example, the same heavy object lifting tasiguge simple and static, while Mars
exploration mission is highly dynamic, but could tbe complex and requires a lot of
additional research for its implementation.

Finally the mission should be obvious and easy tstdedable and at the same
time it should be practical enough to be able towslthe benefit of the specification
optimization approach. For example, ordering roltiotsnove from point A to point B
one after the other is simple enough, however thetigal application is unclear. From
the other side, automated fuel element replacemmesgion for nuclear power plant
seems practical. However, most non-technical resagér not be familiar with problem

specific features.

Practical example

Within the thesis lawn mowing problem is consideasdhe practical application
example of specification optimization proceduree Thission for the robotic system is
to mow defined lawn within a certain time. Lawns asommon in territories of
moderate climate and can be found in city parkshiwiprivate sectors as well as in
country (farm grasslands). The mission consistsvoftasks: the grass should be moved
(1) and transported (2) outside the lawn.

The dynamics of the system changes depending onuimder of agents. Single
agent has to consequently follow the lawn in otdegvenly cover the lawn. Contrary,
multiple agents have to plant their navigation ides to minimize path overlay. In case
of multiple types (classes) of agents the behawfothe system becomes even more
unpredictable.

Due to biological origin of the mission object (ggds continuously growing) it is
possible to extend the mission in time by repeatmgwing cycle. This allows
analyzing different specifications of the systermsoof which could be most effective
at short time frame while others could reveal tlagivantages only in long periods. As

an example of lawn for moving could be considemal gardens (see figure 2.3). They
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setup a complex environment with various obstaafestransportation paths that can be
used to develop advanced strategy for behavidreogystem.

Figure 2.3.Garden of Rundale Palace
Source_http://www.vietas.lv/userfiles/image_gal/BD/image-1630.jpg (accessed 2012 April 11)

The lawn mowing example is used as a case studgllowing sections when
particular aspects of specification optimizatioroqgedure are analyzed. Additional
features of considered lawn subject to specifiegh stf the procedure are defined on

demand in order to keep description simple and @atp

2.6. Summary of the section

The author defines optimization task for specifaaiof multi-robot system. Total
costs of ownership are selected as a preferaliferion. The author proposes detailed
concept of optimization task solution, which isidefl as a set of agents. Agents, in
turn, are composed from components. Optimizatiaarpaters include types of agents
and a number of their instances used within theut®ol. Various optimization
constraints are defined by customer or are deifir@d mission analysis.

Custom procedure is proposed for the optimizatibthe specification of multi-
robot system. It defines a workflow for resolvirgetoptimization task and includes
business requirement specification, mission decaitipa into components, solution
domain analysis, solution candidate evaluationgibiuristic algorithms and simulated
models.

Grass mowing task is defined as an example for dstration of specification
optimization procedure. The same task is used ¢irahe thesis for demonstrative

purposes.
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3. MISSION DECOMPOSITION AND SOLUTION DOMAIN
DEVELOPMENT

The first step of the procedure (see figure 2.2)d$ for specification of business
requirements for the robotic system. In other woitts mission is defined, which
includes tasks and usage peculiarities of the sysidis step corresponds to the similar
stage of system analysis process and is descmbeekt chapter (3.1).

The second step of the specification optimizatiorocpdure is aimed to
formalization of system requirements obtained fromavious step and preparing them
(decomposing the mission) for consecutive optinmraperformed in next steps. The
section is organized in several chapters which rdescovarious aspects of mission
decomposition and solution domain development @®ice

By the definition formal stands for being in accamde with the usual
requirements, customs, etc.; conventional; in tstoigical form with a justification for
every step; correct in form; pertaining to manipiola of symbols without regard to
their meaning (Formal, 2012). In computer scierexentformal methods is used to
define particular techniques that are based onenalical approaches and are used for
the specification, development and verification sufftware and hardware systems
(Butler, 2001). Formal methods allow improving abliity and robustness of a design
due to appropriate mathematical analysis. Fromotiher side application of formal
methods leads to higher costs which in turn makemtunfavorable for small projects
(Holloway, 1997).

Within the thesis a formalization approach is folm in specification
optimization procedure and is used to reinforcegiesf heterogeneous multi-robot
system with evaluation based on mathematical mod&lsing development of the
objective function formalization is applied to cooments. In other words formal
definition of components allows processing themgbperal methods without focusing

on features of a particular component.

3.1.Business requirements specification

By the definition a requirement can be thought ©samething that is demanded

or obligatory; a property that is essential for thestem to perform its functions.
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Requirements vary in intent and in kinds of propsert They can be functions,
constraints, or other elements that must be prasenteet the needs of the intended
stakeholders. Requirements can be described asdition or capability which is
needed for a customer to be able to solve a prololeno achieve an objective. For
clarification purposes, a description of the objext should always precede
requirements; for example, business requirementsgr urequirements, system
requirements, operational requirements, contraquirements, or test requirements
(Ellis, 2012).

System requirements specification is a documera set of documentation that
describes the features and behavior of a systefunétionality required by different
users of the customer is defined within the documém addition to behavioral
properties of the system, the specification alsiinde the main business process that
will be supported by the system, as well as kejoperance features will need to be met
by the system. In other words, requirements smatitin is a description of the features
needed by all parties involved in using, implemagpir maintaining the system.

Requirements specification as a document follows/entional recommendations
and structure. Usually it describes such featusesusiness model, use cases, business,
functional and technical requirements, and variocgnstraints. Development
peculiarities of system documentation are studig&tiimvsystem analysis domain and
are not considered in a scope of the thesis.

The expected result of current step of the spextiba optimization procedure is a
detailed description of requirements for desiretlotr system without going into
details of its implementation. There is no goaldevelop appropriate specification
documentation and because of that descriptionapfirements is provided in free form
text.

Various system analysis methods are applied inrotdedevelop successful
requirements specification. Usually a set of inams with a customer is performed in
order to obtain initial information about the desirsystem. Customer describes his
vision of the system in business terms, while sysé@alyst is responsible to catch the
most important information related to implementataf the system and transform it
into functional requirements understandable forettgyers of the system.

Requirements specification process tends to bdyhitgrative, especially in agile
development methodologies. Initial requirementsainigd from customer are discussed

with developers, who probably request additionahitke for functional requirements.
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They, in turn, are again discussed with customer sm on until the design of the
system is acceptable for all the parties. Figufe shows the process and the role of
system analyst in it. Current step of the spedificaoptimization procedure imply very
similar process. As a studies on system analysisgss belong to different domain it is
not considered in details within the thesis.

Customer Developer

System analyst

Figure 3.1.System analyst role in requirements specificatioprocess

Practical example

The lawn mowing mission is considered within thesib as a practical example.
An industrialist (customer) wants to use autonomobstic system to mow the lawn in

the garden near royal castle (see schematic mégwe 3.2).

Figure 3.2.Schematic map of the garden
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The customer provides detailed description of diggrarameters as follows:

v the size of the garden is 150 per 120 meters;

v' walkways are along the border of the garden andhanavalkways connecting
corners and a central square of the garden,;

v there is a plain terrain in the garden, the sl@veaup to 5 %o;

v' trees and flowerbeds are located on the lawn agshould be avoided;

v' minimum distance between adjacent objects (e.giftbeds) is 2 meters.
The customer defines the task for the robotic sysie follows:

v" any spot of the lawn should be mowed at least emeey four days;

v mowed grass should be transported to any of twopdtens located outside the
garden.

Additional parameters of the garden and requiremtmtthe system are specified
in next chapters in context of considered steppefcgication optimization procedure.
When the customer has introduced his business natkkpecified requirements for
the system it is time to formalize them and develbfective function for optimization

procedure.

3.2.Formal classification of components

According to conceptual model of proposed spedibcaoptimization procedure
the mission is defined using the list of componeitsd the components should be
suitable for formal analysis methods which implgttthey have certain structure and
set of properties used in analysis. In order tqseupuser of the optimization procedure
a list of possible components should be develofedh activities are usually referred
as taxonomy or classification.

In general, taxonomy is the science or techniqueladsification; a classification
into ordered categories (Taxonomy, 2012). Clas#ifbmn stands for systematic
assignment of objects to categories. Within thepscof the thesis classification is
applied to robotic components.

Due to the large variety of different methods deped in multi-robot systems
domain a lot of approaches have been proposedassifyl the state-of-the-art in
different research aspects of multi-robot systefghors discuss open research topics
within multi-robot domain and emphasize theoretitsgues that arise in study of

cooperative robotics. For instance, Cao and hikeagles (Cao et al., 1997) provide a
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review of actual research axes. First of all thefyreé canonical task domains for multi-
robot systems as follows:

v traffic control, which deals with multiple agentsat are moving in common
environment and attempting to avoid collisions;

v’ cooperative manipulation, which focus on task atmm, fault tolerance, learning
and communication organization issues;

v foraging, which addresses such issues as achiepgrormance gain in
cooperative behavior, biological inspirations anougp architectures;

v’ other task domains, which include such fields adtimwbot security systems,
landmine detection and clearance, robotic struttsugport, map making, and
assembly of objects using multiple robots.

Authors classify actual open research topics wittooperative robotic systems
domain into several axes as follows:

v group architecture which provides the infrastrueturpon which collective
behaviors are implemented, determines the capebilénd limitations of the
system, and encompasses such concepts as robaigesiteity/homogeneity, the
ability of a given robot to recognize and modelestiobots and communication
structure;

v resource conflicts, which arise when multiple r@botquest some indivisible
resource, are resolved by variety of mechanismsgbgiroposed in actual
researches;

v' origins of cooperation refers to how cooperativldsor is actually motivated
and achieved and deals with biological paralleang theories and concepts of
emergence;

v’ robot learning which is aimed on adjustment of oarparameters of multi-robot
system in order to optimize their task performaraee to adapt to changes in the
environment;

v' geometric problems which covers research issu¢sathdied to the embedding of
robot tasks in a two or three dimensional worldeJe issues include multi-agent
path planning, moving to formation, and patternegation.

Arai and his colleagues (Arai et al., 2002) providassification of research
directions and identify primary topics as follows:

v’ biological inspirations;

v’ communication;
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v architectures, task allocation, and control;
v localization, mapping, and exploration;

v’ object transport and manipulation;

v' motion coordination;

v" reconfigurable robots.

Some of these topics are already discussed inlslétaprevious chapters (see
1.3.1). Other researchers provide classificatidngadous aspects of the systems. For
example Dudek and his colleagues (Dudek et al.2p@dovide taxonomy of robot
collectives taking into account following features:

v size of the collective;

v/ communication range, topology and bandwidth;

v' collective re-configurability;

v’ processing ability of each unit;

v" collective composition (homogeneous, heterogeneous)

Other researchers focus on classification of sepifoblems related to multi-
robot systems. For instance, Gerkey provide cliassidbn of task allocation problems
in the scope of multi-robot systems (Gerkey, Ma&tai2004). Yanco report a
classification of human-robot interaction takingoiraccount such categories as task
type and criticality, people to robot ratio, inteian rules and other (Yanco, Drury,
2005). Next chapter provide analysis of customsif@sition of robotic components

proposed within the thesis.
3.2.1.Building classification tree of robotic components

As it was stated before component stands for atraadbgiefinition of function of
the robotic system without reference to its redlma Also the proposed specification
optimization procedure is not limited to any specdiomain, and is aimed to be a
universal method. Because of huge number of rolmmmoponents (functions) utilized
by modern industry it is unfeasible to define albspible components by the
classification.

The specification optimization procedure uses gustmmponent classification
approach which implies application of componentgaties instead of components in
specification processing. The classification of poments was developed taking into

account a number of requirements. It has to haN@wimg features:
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v' user oriented — the aim of the classification isstpport user of the procedure
thus it should provide him clear and intuitive cptees of components;

v formal — in general, components are used to defin@ssion for robotic system,
which is processed using the number of analyticgthiods, which in turn impose
formal definition of the components;

v universal — the classification of components shoodd universal in order to
support specification optimization procedure whicttended to be domain
independent method;

v’ extendable — as the number of possible componsritage and grows over time
the classification is expected to be extendablelemand in order to allow its
actualization and/or specialization for user's doma
Taking into account aforementioned features thessdigation model of

components was proposed. It is inspired by bioklgrassification of species and
follows tree structure. Tree structure has seveealefits over plain list classification.
First of all, trees are usually more compact andaassult, more user-friendly in
comparison with lists. Secondly, tree structuree@sily extendable by adding new
branches.

Proposed component classification implies that edement of classification tree
is a taxon, which describes certain component (fanality). The level of details of
particular component increases going deeper thrthglree. Root elements of the tree
define categories and logical groups of componetd@sper elements of tree (branches)
are the specific components of robot system. Leathe tree (deepest elements) can
specify even implementation of components by paldicvendor depending on the level
of details of the specification optimization task.

An important feature of proposed classificatiothiat any node of the tree (rather,
category, group or implementation of component) lmarused to define the mission for
the specification optimization procedure. This nsa#tes procedure highly universal and
allows applying the same methods both to optimizatimobot specification for
conceptual mission, defined using general categasiecomponents, as well as for
detailed mission, defined by vendor specific congms. In case if rather more detailed
mission specification is required user can eagslty @ew elements to the tree.

The proposed classification of components is ntgnded to be complete and
absolute. In opposition, the thesis demonstratasersal approach for component

classification which can be easily extended andptatb for specific domain. The

90



essential tree elements have been created baséak@momies provided in (Bekey,
2005).

In general, defining some functionality for robosgstem usually implies also
certain structural changes — new component is addéich implements the
functionality. Thereby primary categories of thesdification tree define structural
elements of the robotic system, which include asosing, actuation and control
elements.

The very basic feature of any mobile robotasomotion, which defines various
methods used to transport them within the envirartmeocomotion type is usually
selected taking into account such indicators asggnefficiency, control simplicity,
type of environment, impact of adjacent domainglisas biomechanics). There could
be distinguished several types of locomotion deenan application environment.

For the on-ground locomotion the most common afidiefit in terms of energy
consumption are wheeled robots. The mobile baseqispped with the number of
wheels which are used to support the base. Usaalih wheel has its own motor and
differential steering is used for control of locama. Other option includes car-like
construction where steering and drive wheels ardralled independently. The first
option is easier to implement and it is more rééalhile the second option is suitable
for more high-speed locomotion. In advanced robetistems (e.g. space missions)
advanced suspension systems are implemented.

Another on-ground locomotion type is track-drivemich imply that mobile base
of the robot is equipped with pair (or several paof caterpillar tracks — a system of
vehicle propulsion in which a continuous band aatis is driven by two or more
wheels. Typically such robots are used for militatyposes, for planetary exploration,
or for hazardous environments. From a kinematioitpof view, a tracked vehicle can
be considered as differentially driven vehicle. Ting@ortance of tracked vehicles arises
from the ability to climb over obstacles not passatith wheels.

Some other on-ground locomotion types are lessildiséd and include such
options as legged, hopping and serpentine locomotiegged (especially bipedal)
locomotion has attracted new investigations in meckecade because of advances in
hardware production as well as in biomechanics.

Besides on-ground robotics there is wide domaimraderwater robots. Robots
primary are used for exploration of areas whichraredirectly accessible for humans.

Underwater locomotion usually implies special cohtlgorithms (due to non-linear
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dynamics) which allow the vehicle to move in thom®rdinate directions. Two major
classes of underwater locomotion can be distinguisiThe first is distinguished to
submarines and other underwater vehicles, whilesdégend class is inspired by biology
and is focused on fish-like locomotion.

Another category of locomotion is related to aewiahicles. To some extent this
type of locomotion is similar to underwater locoroatin sense that vehicles have to
move in three dimensional medium. There are twesyqf structural implementation of
flying robots could be distinguished: fixed-winghigles (unmanned planes in general)
and rotary-wing vehicles (helicopters). Nowadaysnynavestigations are aimed on
micro unmanned aerial vehicles, which are usedotleatively perform such tasks as
construction or exploration.

v Locomotion

o Wheeled
 Differential
» Car-like
Tracked
Other on-ground locomotion
* Legged
* Hopping
» Serpentine
Underwater
* Submarine
* Fish-like
Aerial
» Fixed-wing
* Rotary-wing

o O

O

o

Next important feature of robots next to their lowgion issensing Without any
sensing robot will not be able to appropriatelycteéa external stimulus and will fail its
mission even in slightly changing environment. Ehare two classes of sensors can be
distinguished. First is related to sensing of r&bointernal environment —
proprioception. In general this relates to feedb&okn various internal devices and
includes such categories as position sensing ysuakd for subsequent navigation
planning; velocity, acceleration and load usedddvanced locomotion control; power
source state (for instance, charge of the batterfyel level) used for intellectual task
allocation and mission planning. Another importee#tured are the sensing of internal
temperature and indication of failures from intéraavices, which allows earlier

identification of hardware issues and appropriaigsion planning.
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The second class of sensors is related to sensnofpat’s external environment —
exteroception. This includes any possible devicécwhs capable to perceive some
information from the environment. Several groupserfisors can be distinguished. One
of the most important is vision, which usually mdés a camera and software designed
for low-level image processing, such as edge afa detection, object recognition.

Another very important group is proximity sensinghich allows distance
perception to adjacent objects which in turn isdusar obstacle identification and
avoidance. Implementation of proximity sensors gary from ultrasonic devices to
laser based meters. Touch sensors, which are sahesivhilar to proximity sensors,
are used to sense the physical world through doestact. The simplest sensors just
close a switch on contact with an external objdébtre advanced sensors provide
indication of contact force. Other similar sensare designed to measure slippage,
especially important in grasping.

Also many other sensors are available which ard uséomain specific mission
and devices for acquiring such information as aowliused for alarm detection or
response to voice commands; olfaction used to tetécparticular hazardous
compounds; temperature used for remote environprebing and others.

v Sensing
o Proprioception

» Position
¢ GPS
¢ Odometer

* Velocity

* Acceleration

* Load

» Power source state
¢ Battery charge
¢ Fuel level

* Internal temperature

» Failures

o Exteroception

* Vision

*  Proximity
¢ Ultrasonic
¢ Laser
¢ Touch

» Slippage

» Audition

» Olfaction

* Temperature
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The third important feature of robotic systems hgitt ability to interact with
environment. Various types afanipulators and actuators are utilized for this. Number
of degrees of freedom (DOF) is used within theith&s classification of manipulators.
Single DOF manipulators stand for simplest traosai actuators like dumpers. Two
DOF manipulators are usually represented by vargrympers capable to hold and lift
the objects. Three DOF manipulators are widelyapm@n production sites for loading
and unloading various types of cargo. Manipulaterh four and more DOFs are
typical robotic arms capable to perform large nundfetasks defined within mission.
Different group is distinguished for various enéeefors, which are usually connected
at the end of kinematic system of manipulator, anel capable to perform domain
specific tasks, like boring, welding or painting.

v Manipulation
1 DOF

o 2 DOF

o 3DOF

o 4+ DOF

o End effector

O

In order to allow more detailed definition of mi@siusing the components two
additional features of robotic systems are addeddssification tree. One of them is
communication capabilities of agents. As a scope of the theslsnited to multi-robot
systems it is implied that agents can communicatie @ach other, no matter, explicitly
or implicitly. Moreover communication component® aronsidered as mandatory for
any mission definition because study about emergehavior of robot group with no
communication is out of scope of the thesis. Compoaiion components can be
divided into two groups depending on their effegetiskange. Local communication
allows information exchange between agents onivelsgtsmall distances and includes
such technologies as infra-red transducers, Blaletaetworks as well as sign based
communication, like color led, gestures and othRiange of global communication is
limited only by specification of utilized technolpglt includes such technologies as
wired and wireless networks, radio signals, GSMvoeks and others.

v' Communication
o Local
e IR
* Bluetooth
» Sign based
o Global
o Wi-Fi
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* Wired
* Radio
« GSM
The other feature is related ¢omputation capabilities of the robots which are

required in order to fulfill the mission. These lume various components for image
processing, mapping and localization, navigatiod gath-planning, task allocation,
fault-recovery and many others. Most often thesepmnents are implemented as
software module for robot controller.

v' Computation

o Image processing
Navigation
Path planning
Task allocation
Localization
Mapping
Fault recovery

0O O O O O O

Provided classification categories are intendeddémonstrate the approach
proposed within the thesis. The classification sheuld be extended by adding more
detailed categories of components or even theidmespecific implementation in order

to adopt the specification optimization procedunespecific domain of industry.
3.2.2.Defining properties of components

One of the reasons building the classification@hponents in the form of three
is its intuitive structure and possibility to firgrlier defined and to add new categories.
The other important feature of tree structure ssassed in this chapter and it is related
to properties of components.

As it was described before the mission is definsthgithe components from
classification tree and then processed using varammputational methods. Also the
whole specification optimization procedure is imted to be formal, that is not limited
to specific application domain. Thereby in ordestcessfully process defined mission
in formal manner the components require additigpmaperties to be specified for them,
which in turn are used by processing routines.

Conceptual features of the properties themselveslldhbe described before
assigning specific properties for the componenke properties of the components are
designed similarly to methods in object-orientedagaym of software development.
First of all tree structure of component classiima allows inheritance of properties. It

is designed in such way that all properties areridd from parent components down
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to their children. This simplifies extension of ttlassification tree because most of the
properties are defined on ancestor nodes, thus omdgt detailed properties are
additionally required for new categories.

Secondly, core properties can be overridden bydcahddes. That is individual
properties inherited from a whole branch of the ttan be redefined in child node by
setting up new values. Such approach makes thsifatasion tree flexible and highly
adoptable for application domain.

Also some properties are allowed to be defined auththeir value, just as
placeholder for real components. The values fosdhgroperties are mandatory and
should be set at mission definition stage just teeformal processing of specification.
An example of such property is price of particutlmmponents, which depends on
industrial domain of desired multi-robot system. asesult it could be defined only at

practical application of the specification optintina procedure.

Practical example

Finalizing the discussion, the list of mandatorgperties of components should
be developed for the example used within the théssit was stated before, primary
criteria for evaluating specification used withihet thesis are the total costs of
ownership. Thereby properties required for calaudpthe TCO are mandatory. The list
of proposed properties is as follows:

v price of the component, which stands for expensegiired for buying the
component;

v/ power consumption, which influences the costs meguifor operation of
component;

v' complexity index, which indicates relative diffitakss of assembling the agent
that consists from particular component.

Complexity index is a relative value used to corepegent components with each
other and as a result its bounds are highly deperidem the subject area peculiarities.
For example, CPU and motor controller mounted amtprinted circuit board could
have complexity indexes equal, respectively51 and 1.0, meaning CPU i$ times
more complex to mound in comparison with motor calidr. But in case of CPU,
motor controller and a led mounted onto the samqat board the complexity indexes

could have values equal, respectivelylib, 1.0 and0.1, meaning that both CPU and
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controller mounting is about ten times more comptegomparison with a led. For the
grass mowing example the author used values wigtmge from0.5 up to1.5.

These properties are discussed in details in fatigwsections related to costs
estimation model (see 5.2). Also the applicationrme@aof the component is
recommended to be specified in order to distingaeahe components used for different

functions.
3.2.3.Implementation model of classification tree

Technical implementation of component classificatitee follows classical
approaches for parent-child models. It was stagddrb that any node of the tree can be
selected for mission definition, thus there is osiggle type of nodes in the tree —
components. Also the number of children of eachen@l not known in advance.
Moreover new child nodes can be added after a wBibethe structure should be
dynamic.

Dynamic trees are a usually implemented using seveeference that is each
child object has reference to its parent. Onlyriba of the tree does not have defined
parent. Such object is usually hidden in user fater and is not permitted to be
selected. Also parent objects sometimes maintadish of their children using special
lists. Each node of the tree (component) has ainggize array containing references
to its unique properties. It means that inheriteopprties are not directly assigned to
each child node, but instead they are obtainedelgyeasting such information from
parent node using recursive procedure call. Coneeépimodel demonstrating

implementation of classification tree is availabtefigure 3.3.

0

Property = ——<> Component

parent

Figure 3.3 Classification tree implementation model

3.3. Mission tasks

Previous chapters describe the classification dfemmponents, which is used to
define mission objectives for multi-robot systermongponents allow specifying only

structural features of the mission, for instanbe, trequirements for the robotic system
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to be able to perform certain functionality. Howedynamic features of the mission
remain undefined and the application of certain gonent within the context for the
mission is unclear.

A concept of task is introduced because of abosgerd®ed concept of mission. In
addition to the list of components, global missisrdefined in terms of tasks. They
stand for simple independent missions, which camirbeocally performed by robotic
system. Such missions are usually used as test Emdsobotic systems in
investigational projects.

Thereby the mission for the robotic systems comemtlewvithin the thesis is
defined using the list of components (i.e. requitgtttions of the system) as well as the
list of conceptual tasks, which define behavior tbé system. Additionally each
component is assigned to at least one task. Tihexjisred for evaluation of the solution
candidate described in details in following secti@h.2.4). In general, such assignment
allows predicting overall performance of the system the mission. For the same
reason the amount of work to be performed by thetio system within certain task is
defined. Units of measurement depend on applicatmnain and can vary from time to
production entities.

The classification of the tasks is not considerethiw the scope of the thesis
because it strongly depends on application domdirthe proposed specification
optimization procedure. As it was stated beforeksashould be simple enough to be
obviously performed by robotic system. Theoreticalhy task can be decomposed into
simpler tasks upon reaching very general actiorwvd¥yer this will result in a high
number of the tasks defining the global mission asa result will impede application
of the specification optimization procedure. Theommended number of tasks

considered within the thesis is up to four.

3.4.Practical mission definition for multi-robot system

A practical example used through sections of tlesithis grass mowing mission
defined in chapter 2.5. This chapter formally de$inthe mission in terms of
components and mission tasks. The result of fora@din is used in next sections in
order to demonstrate the following steps of theppsed specification optimization
procedure. Also the optimization criterion was defl in 2.2 and that are the total costs

of ownership of the robotic system designed togrerfgrass mowing mission.
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Practical example

First of all the list of required components isidetl. Very basic function of the
desired robotic system is its ability to move otre lawn — thdocomotion. Wheeled
car-like mobile base was selected because sewasbms. Firstly, mowing mechanisms
are relatively small and lightweight thus wheels auitable for handling such vehicle.
Secondly, car-like steering mechanism has leasaaingn grass and soil in comparison
with tracks and differential steering.

Communication facilities are mandatory for multi-robot systen@obal Wi-Fi
communication was selected for this purpose beoaiuse distribution on the market as
well as it offers adequate communication rangeabietfor the scale of the lawn.

Next group of components is related to performingsion specific tasks. First of
all the mowing machine is required. In general it could be consideredhbas
manipulator and as end-effector for manipulatorr #emonstrative purpose 1-DOF
manipulator was selected representing mowing machuhich could be in two states:
idle (lifted up) and working (lifted down). Also é¢hsize of mowing machine is defined
according to business requirements. They defing¢ thmimum distance between
adjacent objects is 2 meters, thus the mowing rebotild be able to maneuver in such
spots. In order to simplify demonstrative calcula the size of mowing machine is
considered to be 1 meter.

Secondly, amanipulator for collecting grass clippings into container is
required. Its implementation highly depends on cositppn of other components and
can be implemented as a part of mowing machineedisas separate device. In order to
allow any of these options to be considered in ifipation optimization procedure the
manipulator was defined as an abstract end-effeaothout selecting its
implementation details. The third mandatongnipulator is related to unloading the
grass clippings into dumpsters after transportihgnt outside the garden. For
demonstrative purpose a dump track is defined tiopa unloading, as a result another
1-DOF manipulator is selected from classificaticret

Finally thesensing and computatiorfacilities are defined for the robotic system.
For the demonstrative purpose sensing featureadactuch components as proximity
sensing implemented as laser distance meter fordiagothe obstacles and GPS
positioning for global navigation. Also load meter used in order to perform
transportation of grass clippings in appropriateqérency. Computational features

required for the mission include such facilitiesravigation for aiming the robots on
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the lawn as well as task allocation for distribgtitask among the robots (in case if
solution candidate consists of multiple robots).

The next aspects to be defined are misdmsks For the example mission
considered within the thesis two tasks could b&mdjeished. The first stands for grass
mowing task, which in general can be described &\ ling on the lawn in such
manner that a path goes through uncovered areheolatvn. Within a scope of the
thesis such task is called asea coverage taskThe essence of the task is to evenly
cover (travel through) the defined area. A robstistem is successfully performing the
task if the size of the area which was covered ntbam once tends to zero. Other
practical examples of area coverage task includl sussion as floor cleaning, aerial
photomapping, mine detection, most of agricultpraicedures and others.

The second task of the mission is to transportsgddippings from lawn to the
dumpsters. Within the thesis it is callednsportation task. This task is essentially
different from previous because it does not regenren covering of the area but instead
requires traveling from one point to another. Saesfid implementation of this task
imply that the length of traveling path is as shast possible which in turn will
minimize the costs for robotic system performingtstask. Also other path evaluation
criteria are possible, for instance, traveling tionesmoothness of the path. This type of
task is common for logistics and its complexity idiyp increases depending on the
number of points to be visited. A generalized d&én of the problem is known as
travelling salesman problem, which in turn is NRPeh@ombinatorial optimization
problem.

All the previous definitions of the components smenmarized in table 3.1, which
includes also additional properties defined befage mandatory for specification
optimization procedure. The units used for pricd power consumption definition of
the components are referred as abstract units sf w@spectively for buying the
component and for running the component per timé #iso area coverage task is

referred as the first (1), and transportation taskhe second (11).
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Table 3.1 Detailed definition of mission components

Name Class Price| Power| Additional properties
Mobile base Wheeled car-like 60 4.0 Speed: 0.5 m/s
Network Wi-Fi 30 2.0 Complexity index: 1.1
Mowing machine | 1-DOF manipulatory 40 5.0 Only | task
Loader End-effector 40 4.0 Only Il task
Dumper 1-DOF manipulator| 20 3.0 Only Il task; m&xkg
Laser Proximity 30 2.0 n/a
GPS Position 25 1.5 n/a
Load Load 20 0.5 Only Il task
Navigation Computation 50 1.0 Complexity index: 1
Task allocation Computation 50 1.0 Complexity index2

Additionally the amount of work within particulaagk should be defined. These
values are derived from the business requirementseomission. As the size of the
garden is considered to be 150 x 120 meters ansizbeof mowing machine is 1 meter
it is can be concluded that mowing robot at leastehto cover 18 000 square meters of
lawn. Considering additional consultations with tonser this amount is reduced by
40% because of walkways and flowerbeds. Thus therel0 800 square meters of the
lawn to be mowed, which are also can be considasednits of work to be performed
by the robotic system.

The amount of work for second task is not so thitgadeterminate. It is known
that dumper can handle 20 kg of grass clippingsoAtonsidering consultations with
the customer, the density of the grass is equ@lab kg per square meter. This means
that the dumper becomes fully loaded after coltectjrass clippings from 80 square
meters of the lawn. Thus it is expected to hav8d®/ 80 = 135 trips from lawn to
dumpsters outside the garden. Another interpretatiothe obtained value is that it
shows the number of stacks to be transported. blietke value can be used to define
the amount of work to be performed for the secasé.t

Of course aforementioned assumptions are very robgh because of their
simplicity they can be easily used for processimg specification optimization
procedure. Also some of them are refined on demiandbllowing steps of the
procedure described within next sections.

The general rule, which was followed during selegtthe components, is to
specify the mission as simple as possible. Suclroaph allows fast progressing
through the steps of proposed specification opttion procedure. If the results are

satisfactory then the mission could be refined rmtedure executed iteratively. Such
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approach is much practical then initially definithgg mission with fine details and then
after long processing to obtain negative results.

3.5. Iterative analysis of mission definition

According to specification optimization procedune tnission definition provided
in previous chapters can be explicitly used in ret&ps of the procedure. However by
the analogy with business requirements specifinattbe mission definition can be
performed in an iterative manner, which means thatdefinition of the mission is
refined after regular consultations with custonigris chapter provides demonstrative
analysis of the mission definition with aim to deyeadditional constraints for solution
domain. This in turn will decrease computationamptexity of subsequent steps of
specification optimization procedure.

As the number of solution candidates depends omuhngber of components (for
more details see section 4), primary aim of thelysimais to reduce the number of
components or at least to reduce the number of m@nhbns considered by
optimization procedure. Constraint developmentdoamponent combinations is based

on logical derivations and can be partially autadat

Practical example

The very first example of constraint refersnobility of the agents which are
composed from the components. A feature of the ianisspecifies that the grass
mowing machine should be transported over destinagirea (e.g. lawn, grassland).
Because of that any agent (combination of compa@penthich contains mowing
machine and does not contains mobile base araliyitirational. Such agents will not
be able to perform one of mandatory functions. $hme logics can be applied for
loader of grass clippings, laser proximity senswt &PS positioning device. All these
components are useless if placed on stationary witlitin the scope of the current
mission.

Contrary the dumper manipulator used for unloadigtransportation container
can be placed on a stationary unit. For instanailenrobot with a fixed container can
drive up to stationary unloading mechanism, whidhtwn the container around.

Formally such rule can be implemented using logiogblication function. It
returns false only when first operator is true, but second operator is false (see
table 3.2).
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Table 3.2.Truth table of logical implication function

A B A—-B
0 0 1
0 1 1
1 0 0
1 1 1

An interpretation of such Boolean operator is do¥es. Considering component
A requiring component B for its proper function .(2) an agent does not contain
component A then it is out of scope of the currane (it bypasses the validation
because the result of logical implication is truean agent contains component A then
it bypasses the validation only if component Blsoaresent in the agent.

compA - compB (2)

Next type of applicable constraints is based performance capacity
calculations of robotic system. These constraiesdarived from business requirements
of the mission and from properties of the composeiihe most obvious constraint
could be derived from the size of lawn and travekpeed of mowing machine. It was
stated before, that there are 10 800 square meftehe lawn to be mowed during the
mission. According to specification of componetis mobile base of mowing machine
moves with speed of 0.5 meters per second. Thettebyobot needs at least 21 600
seconds or 6 hours to mow a whole lawn taking atoount an assumption that the
robot constantly works during this time.

According to current business requirements theesyss capable to complete the
mission in time (the limit is set to 4 days). Howevf the dimensions of lawn are
increased five times up to 750 meters per 600 metieen the time required for single
robot to complete the mission becomes more theay8.drhus in order to fulfill four
day limit the system has to contain of at leastdbile mowing machines taking into
account that they are working 24 hours per daygckvhiso is not desirable.

This chapter demonstrated general approach folldaedonstraints development
on the second step of the proposed specificatitimaation procedure. A constraints
development process highly depends on applicatiemaih and it mimics system

analysis processes used for software architecewelopment.
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3.6.Summary of the section

This section describes mission decomposition psowdsch is used for solution
domain development. The author proposes formakifieation of robotic components
which supports the decomposition process. A flexilglassification structure is
proposed and populated with the definitions ofgbeeral purpose robotic components.
The mandatory properties are defined for the pracéxample used within the thesis.

The concept of the mission task is introduced fgp®rting definition of dynamic
aspects of the mission for a multi-robot systeneaAcoverage and transportation tasks
are defined for the demonstrative example.

The iterative analysis of constraints is descrihestd to eliminate initially
irrational solution candidates. This allows decregishe number of processed solution
candidates during the next steps of the procedun&h leads to faster processing in

general.
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4. ANALYSIS OF DOMAIN OF FEASIBLE SOLUTIONS

The third step of proposed specification optimizatprocedure (see figure 2.2)
stands for solution domain analysis, which is aggpbn formal definition of the mission
developed within previous step of the proceduree Timain goal of this step is to
recognize the complexity of the specification optiation problem and predict the
number of feasible solutions. The results of thelysis are used for selecting
appropriate optimization and evaluation approachstidsequent steps of the proposed

procedure.

4.1.Calculating a number of unique agents

According to conceptual model described in chapt@rthe specification of multi-
robot system (solution) is formed from agents, Wwhin turn are composed from
components. Thus very first step of complexity gsial is to obtain the number of
agents which are possible to combine from definesiponents. Taking into account
the fact that components define only a type of egjemot the actual instance of the
agent, the number of unique agents is considerddsastage.

Proposed conceptual model does not specify anytdilon upon agent
composition, thus any combination of componentaliswed and is considered as
unique agent. Among the number of possible optidnere are two extreme
combinations of components: an agent formed fromglsi component, and an agent
combined from all defined components.

Agent combination from components is demonstratec @eneralized example.
Consider an abstract mission which is defined usinly single component. The only
possible agent is composed from that componenth&total number of possible agents
equals to 1. Now consider a mission defined uswmg ¢components. In such case it is
possible to combine agents from each single comppres well as from both
components together. So the total number of unagents equals to 3. Furthermore
consider a mission defined using three componehst like in previous cases it is
possible to combine agents from every single corapb(three unique agents). Next it
Is possible to combine agents from pairs of comptm@nother three unique agents).
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And finally the agent composed from all three comgmas is also feasible. Thus the
total number of unique agents equals to 7.

Generalizing agent composition rules it is posstblelistinguish clear algorithm
for generating all possible agents from the givemgonents. First agents are composed
from every single component, then from all possp&s of components. Next agents
are composed from possible triples, quads of compisnand further more until the
total number of components is reached. The totalbar of unique agents equals to the
sum of number of combinations for each of aforemoeetdd positions. The
demonstration of recently considered cases is gealvin table 4.1.

Table 4.1 Agents combined from various numbers of components

Components Agents Number of agents
A [A] 1
A B [Al], [B] 3
[AB]

A B, C [A], [B], [C] 7
[AB], [AC], [BC]
[ABC]

A B, .., X [A], [B], ..., [X] ?
[AB], ..., [AX], ..., [BX], ..., [X-1, X]
[ABX], ..., [X-2, X-1, X]
[AB...X]

Finally the analysis of number of unique agentseisforced by mathematical
considerations and equations. First of all exaatlmer components is known at mission
definition stage, thus it is known the number o§igons (singles, pairs, triples) to be
summed up. Next, the number of combinations witach position can be calculated

according to definitions from set theory (3).

n!

Ckh=—— 3
Tkl (n!'— k! (3)
where
n — total number of elements within set;
k — number of selected elements for combination.

Thereby the final equation for calculating numbtuwique agents which can be
produced from defined components is developedr{d)samplified.
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n n I
f(n)=zcﬁ=zm=2n—1 (4)
k=1 k=1
where

n  —number of defined components for the mission;

f(n) — total number of unique agents.

As it can be seen, the obtained equation is of espital type and, as a result, the
number of unique agents grows rapidly dependinghemumber of components, used
to define the mission. This effect is known as comatorial explosion where small

increase of the number of components brings hugrease of possible combinations.

4.2.Calculating the number of feasible solutions

When the number of possible unique agents is oddaih becomes possible to
analyze the number of feasible solutions. Accordimghe conceptual model of the
proposed specification optimization procedure thleteon candidate is considered as a
set of agents which is capable to fulfill the nmissiVery basic criterion of capacity of
the system to complete the mission specifies thatyedefined component should be
used within the solution at least once.

Additionally conceptual model allows multiple inst&s of agents. Moreover
solutions which are composed from the same typegents but differ with each other
only by the number of instances are also considdiffdrent. A logical conclusion
arises that the number of solutions is infinite reweith single defined component
because the number of instances is infinite (camedpmodel does not define any
constraints). However such considerations are ragttijgal, because infinite number of
agent instances leads to infinite expenses for system. Within a scope of the thesis
total costs of ownership is used as a primary apttion criterion of a specification of
a robotic system. The criterion implies minimizatiof its value, which in turn will also
lead to decreasing number of instances of agents.

An artificial limit for the number of agent instaax (5) is introduced for practical
reasons. It is used in order to protect computatiafgorithms from overflowing during
evaluation steps of the proposed specificationnaptition procedure. The value of the
constraint used within the thesis equals to 10.

AEN* (5)
where
N* — positive natural numbers.
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Previously introduced limit of agent instances appeas multiplier for total
number of solutions. For illustrative purposes after solution domain analysis
performed within current chapter the constrairitsted toA = 1 and is omitted until
final conclusions.

Solution composing from agents is demonstrated ogemeralized example.
Consider an abstract mission, which is defined gusimgle component. Only single
unique agent is possible to compose from the commorAnd as a result only single
solution is possible: to utilize the only availabigent.

In case if mission is defined using two componéantnd B, three unique agents
are feasible: [A], [B] and [AB]. Taking into accouthe limitation of agent instances it
is possible to combine these agents in seven diftavays (see table 4.2).

Table 4.2 Demonstrative combinations of agents and feasibsmlutions

Agents

[A] [B] [AB] Comments
v Invalid solution, missing component B
v v Two simple agents
v v v All possible agents
v v Simple and complex agents

v Invalid solution, missing component A

v v Simple and complex agents

v Only complex agent

As it is seen from the table, not all possible corations of agents can be
considered as solutions (marked rows). Some combngacannot be solutions because
they do not contain all defined components, whighraquired by conceptual model of
multi-robot specification. It is worth to mentiohat this validity criterion does not
depend on the number of agents selected for soluft@r instance, both invalid
combinations are composed only from one agentabtite same time valid solutions is
composed from single complex agent. The same &ituappears for missions defined
by three and more components.

The number of possible combinations of agents sslyeabtained using similar
approach used for calculation of component comlanat (Komasilovs, Stalidzans,
2011). Thus the number of valid solutions is cated using equation (6), which also

can be simplified.
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f(m
gn) = Z C}(n) —r(n) =22""1-1—-r(n) (6)
=1
where

n  —number of defined components for the mission;

g(n) — number of solutions;

f(n) — number of unique agents (4);

r(n) —number of combinations, which are not solutions.

Equation (6) contains an unknown functiofn) which represents the number of
such combinations, which cannot be considered &stiws because of missing
components. In order to obtain its value it is regph to analyze a content of the
combination, which is hard to perform using anabftiapproaches. Because of that it
was decided to obtain its values experimentally.

Special software was developed by the author irrotd support experimental
calculations of the function — CoMBot-Gen, whiclargls forCombination Generator
for Multi-Robot system specification problem. The main featuréhefsoftware is the
use of a special algorithm for generation of sohsi (described below). The
combinations are organized in tree structure, whithturn allow generation of
combinations on demand. According to algorithmlisteof possible agents is sorted at
first, and then added to the tree structure on lexal. Next, child nodes are populated
recursively on demand, when particular parent nedspanded. Only such agents are
considered as s child nodes, which are positioraind current agent within ordered
list. This rule ensures that tree does not comtepeating branches. The solution (the
combination of agents) is obtained by selectindi@aar node the tree and recursively
fetching agent information from its parent. Figutel shows an example tree for
mission defined using three components. Yellow sdddicate valid solutions, while

grey nodes stay for incomplete agent combinations.
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Figure 4.1 Agent combinations analysis software

Table 4.3 demonstrates the total number of comibinstof agents calculated
using aforementioned equations, as well as theegakxperimentally obtained using
solution analysis software.

Table 4.3Number of components, agents and their combinations

Agents, Combinations, Invalid r(n)/g(n),
Components f(n) gn) combinations,r(n) %
1 1 1 0 0.00
2 3 7 2 28.571
3 7 127 18 14.173
4 15 32 767 470 1.434
5 31 2.15 x 16 162 630 0.008
6 63 9.22 x 10° ~3.36 x 16" * =0
7 127 1.70 x 16° ~5.94 x 16° * =0

* — values extrapolated using exponential regr@ssio

As it can be seen from the table, the total nunalbeombinations of agents grows
extremely fast and reaches computational limitsioflern systems rapidly. The same is

also confirmed by its diagram. It has exponenti@nd line when plotted on

logarithmical axis (see figure 4.2).
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Figure 4.2 Number of solutions plotted on logarithmical axis

The values of(n) function were experimentally obtained for casethwp to 5
components. Greater parameter values lead to oweny errors on computation
hardware used within the experiments. However tedt of the function is obtained.
Absolute values of(n) function grow slightly faster than pure expondnfiaction
(see exponential trendline on figure 4.3), whichangthat the function lags behind

g(n) function.
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Figure 4.3 Absolute values ofr(n) function plotted on logarithmical axis

Relative amount of invalid combinations was anallyaze the context of all
combinations: r(n) / g(n). Despite the fact that absolute amount of invalid
combinations grow exponentially, the amount of lidzaombinations compared to total
number of combinations converges to zero perceneréby relative value of(n)

function goes delow 0.01 % at five components {ggee 4.4).
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Figure 4.4 Relative value ofr(n) function

Taking into account aforementioned considerationd the fact that values of
r(n) function can be obtained only experimentallysitéasonable to ignore it in final
conclusions about solutions space of specificatmptimization problem. Also
previously provided analysis implied that thera ismitation of single instance per any
agent A4 = 1). Adding it to final equation will grant additiohexponential degrees for
the function and will let it grow even more rapidklso it is not reasonable form
practical point of view because it leads to uskafe numbers.

Completing analysis the final equation used folatzon of solution domain for

specification optimization problem is as followg:(7

G(n) =22""1-1 7)
where
G (n) — considerable number of solutions;

n — number of defined components for the mission.

Practical example

Returning back to grass mowing example, it is waeotlobtain an evaluation of
the expected solution domain. There are 10 explidefined components for the grass
mowing mission. The number of possible agents squgi(10) = 1023, which result
in G(10) ~ 8.99 x 103°7 possible combinations.

Taking into account developed constraints (see tB®)number of considerable
agents reduced down tf'(10) = 211 agents. The number of solution candidates
passed to the next steps of the specification agdition procedure is estimated to
G'(10) =~ 3.29 x 10%3 combinations.
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4.3. Selection of suitable optimization approach

Previous chapter provided analysis of solution daméor specification
optimization problem and demonstrated that the rernob feasible solutions usually is
beyond computation capacity of modern hardware.il&ingircumstances are met by
most of other combinatorial optimization problem general, combinatorial
optimization is a topic in applied mathematics vihgtands for finding an optimal
object in the finite set of other objects. Applioas of combinatorial optimization
include such fields as logistics, production indest military and others. Common
practice used for solving combinatorial optimizatiproblems implies application of
heuristic methods (Hromkovic, 2010; Korte, Vyge@12).

In general, heuristic stands for a rule of thumimpdification, or educated guess
that reduces or limits the search for solutionslémains that are difficult and poorly
understood. Unlike algorithms, heuristics do noargmtee optimal, or even feasible,
solutions and are often used with no theoreticargutee (Heuristic, 2012; SH Zanakis,
Evans, 1981; Helsgaun, 2000).

According to the specification optimization procesluthe solution domain
analysis is performed with aim to reveal numbererpected solutions and to select
appropriate optimization method (see 2.4). Stepad 6 of the procedure are intended
for evaluation of solution candidates and for d@&bec the best options in terms
developed criteria. In other words, defined optetian task is being resolved during
these steps of the procedure.

As it was demonstrated on flowchart of the procedsee figure 2.2, step 4) there
are available two options of steps performed d&fterspace of solutions is analyzed.
First, it is possible to proceed directly to fineakiation of solution candidates using
simulations (step 6). Second option implies furtealysis of solution domain with the
aim to reduce it (step 5). The selection of negp stepends on user expectations as well
as from computational capacities available for psstng.

In terms of accuracy of final results it is readueato process all possible
solutions using fine evaluation, which is based samulations. However this will
require enormous computational resources and tiwkech is usually undesirable.
Because of that additional step is added to spatidin optimization procedure, which
is intended for initial evaluation of solution cadates. Taking into account the analysis

of solution domain, performed within this sectiginis not recommended to perform
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fine evaluation on full space of solutions for noss, which are defined using four or

more components.

4.4. Summary of the section

During the analysis performed within this sectitve scale of solution domain
was estimated. A structural analysis of the sofutttomain is described providing
fundamental considerations on solution generatrongss.

Custom formulas were developed for calculating tleenber possible agents
combined from the components. Formulas for anaytestimation of the number of
feasible combinations of the agents were proposed.

Custom utility softwareCoMBot-Genwas developed by the author used for
analysis of the solution domain and aimed to theegion of possible combinations of
specified components and agents. Near double erfiahggrowth of number of
solutions as a function of the number of definechgonent is found.

An expediency of application of the constraints eleped in step 3 of the
procedure was proved for the practical example. ddwestraints allowed narrowing the

solution search space and reducing number of dessdmbinations by 244 orders.

114



5. INITIAL EVALUATION USING HEURISTIC METHODS

The fifths step of proposed specification optimi@atprocedure stands for initial
evaluation of solution candidates using heuristethads. According to the procedure
this step is optional and it is reasonable to skip an analysis of all the number of
solution candidates is feasible. The main goalhig step is to apply initial (rough)
evaluation of solution candidates and eliminateseanf them from future processing
thus narrowing the space of considerable optiongeretic algorithm is utilized within
the thesis for aforementioned purpose as a heugstirch method (Eiben, J. E. Smith,
2003).

The genetic algorithm as well as other evolutionalyorithms is inspired by
organization and concepts of biological proces3é& genetic algorithm is a search
algorithm based on the conjecture of natural selecnd genetics. The features of a
genetic algorithm are different from other seamthhiques in several aspects. First, the
algorithm is a multipath one that searches mankge@a parallel, hence reducing the
possibility of local minimum trapping. Second, thenetic algorithm works with a
coding of parameters instead of the parameters dblews. The coding of parameter
will help the genetic operator to evolve from therent state into the next state with
minimum computations. Third, the genetic algoritlevaluates the fithess of each
candidate to guide its search instead of the op#tian function. The genetic algorithm
only needs to evaluate objective function (fithess)guide its search. There is no
requirement for derivatives or other auxiliary kredge. Hence, there is no need for
computation of derivatives or other auxiliary fuonaos. Finally, the strategies employ
genetic algorithm explores the search space winergitobability of finding improved
performance is high (K. Y. Lee, El-Sharkawi, 2008).

Optimization is the basic concept behind the appibm of genetic algorithms to
any field of interest. Traditional optimization tetques begin with a single candidate
and search iteratively for the optimal solutionapplying static heuristics. On the other
hand, the genetic algorithm approach uses a popuolat candidates to search several
areas of a solution domain, simultaneously and tadgsyp.

Genetic algorithms have been most commonly appieedolve combinatorial
optimization problems. Combinatorial optimizatiosually involves a huge number of

possible solutions, which makes the use of othéimagation techniques hopeless. In
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problems of this kind, the number of possible sohg grows exponentially with the
problem size. Therefore, the application of anaaftoptimization methods to find the
optimal solution is computationally impracticableeuristic search techniques are
frequently employed in this case for achieving kigtality solutions within reasonable
run time. Also genetic algorithm has been appliectessfully to real world problems,
several of their crucial parameters have been tseleempirically. Theoretical
knowledge of the impact of these parameters onaxgience is still an open problem.

Genetic algorithms (Holland, 1975) operate on aupstfon of individuals called
genotype. Each individual is a solution candidatetgiven problem and is typically
encoded as a fixed-length binary string, which i analogy with an actual
chromosome. After an initial population is randonuy heuristically generated, the
algorithm evolves the population through sequerdral iterative application of three
operators: selection, crossover, and mutation. & generation is formed at the end of
each iteration. In each generation, the fitnesswefry individual in the population is
evaluated, multiple individuals are stochasticalglected from the current population
(based on their fitness), and modified to form & pepulation. The new population is
then used in the next iteration of the algorithm.

Application of genetic algorithm requires specidleation on two challenging
aspects, which affect overall results of heurissiearch. First of all, a genetic
representation of the solution domain should besliged. It should cover complete
solution domain and be stable against local extrenBecondly, a fitness function is
required in order to evaluate the individuals. Quadf fitness function directly affects
the results of optimization because solution caagisl are selected for next generations
according to their fitness. Next chapters providdaded analysis of both genetic
representation of solution domain and developméfitress function. Further chapters
describe design of custom heuristic optimizatiorftvgare developed for initial
evaluation for multi-robot system specification, igéh utilizes genetic algorithm in its

kernel. The final chapter provides analysis of mptation results and conclusions.

5.1. Genetic representation of solution domain

As it was mentioned before, correct genetic repitad®n of solution domain is
vital for successful application of genetic algamit In biology, chromosomes of the

cell contain all information of its genotype readrfor reproducing similar cells, for
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protein generation, etc. In other words chromosasna mapping of existing entity
properties onto medium.

Computational genetic algorithms mimic biologicabgesses in sense, that real
solution is also mapped onto artificial chromosomthe sequence of bytes which is
processed by computer. The creation of such a mgppguires some creative thinking
because proteins and computer programs are vdgraht things. Thankfully, human-
built computer programs are much easier to undaisthan proteins and it is not
necessary to know, for instance, the rules thagrdehe the dimensional structure of
proteins to create a simple genotype/phenotypeesystapable of evolving computer
programs (Ferreira, 2002).

Genetic representation of solution domain for genetgorithm stands for
development of such data structure, which is slatédr computational processing and
at the same time capable to encode solution catedidzenetic representation for
particular solution domain is characterized by salvéeatures. First of all, it has to
cover full solution domain. In other words, datausture of chromosome has to be
capable to encode any possible solution. This essimat whole heuristic search occur
on whole solution domain. Contrary, if chromosonse dapable to encode only
particular subset of solutions, then resolutioropfimization task could be considered
only as local extremum.

Next, genetic representation of solution has taenstrinsic class membership.
This means, that solution candidate of particulass always produce valid structures
for respective class. In other words, chromosonsethde stable against application of
genetic operators and reproduce valid solutiorsutjin generations.

Final requirement is related to the previous regugnt and also it depends on
configuration of a genetic processor, describedext chapters. Genetic representation
of solution domain has to ensure that evolutionuocgmoothly and efficiently. If
chromosomes suppress application of genetic opsraipallow only partial evolution,
then heuristic search will occur only within subsgfeasible solutions. This in turn will
result in local solutions which contradicts purposégenetic algorithm itself.

Taking into account aforementioned conclusions aetie representation of
solution domain is defined for multi-robot spediiion optimization task. According to
the proposed concepts, the specification of maohiet systems stands for a set of
agents, which in turn are composed of componemisitiSn of this optimization task is

a specification of multi-robot system. Thereforaitig to the genetic representation of
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solution domain it is possible to conclude, thabamosome (solution candidate) should
define a set of agents.

In order to define data structure for such set génés several options were
considered. First of all, the question arises wéeihis necessary to encode solution as
fine as on level of components. From the theorefcant of view, providing finer
details for genetic processing allows to reachrfiesults. From the practical point of
view, taking into account peculiarities of multibat specification optimization task,
such level of details is useless. Components areused in solution directly; instead
they define agent types which, in turn, are statiws it is computationally effective to
define all possible agent types before actual genatocessing. Next, in case if
components are involved into genetic processingdatitional validation is required to
avoid the situation, when the same agent type aved multiple times instead of
multiple instances of the single type.

Therefore genetic representation is developed enlegkiel of details of agent
types. Deeper analysis reveals additional benefitthis approach. Agent types are
generated before actual genetic processing and pitigides possibility to build
additional level of constraints. For specificatioptimization task this level is used to
eliminate pointless combinations from genetic pssoey, for instance, stationary
agents with mobile actuators, etc.

The next decision is related to encoding of agestances. Usual application of
genetic algorithm implies use of binary genes witithe chromosome. For the
optimization of specification of multi-robot systethhis would mean that only agent
types are encoded within chromosome. An additienabding dimension is needed for
the number of instances of agents.

Taking into account aforementioned requirement #oedframework of genetic
processing used by the author (see 5.3) the ingggyees are used instead of bit genes.
This type of genes allows storing integer valuethwidefined range and is well suited
for application of genetic operators. Also rangdrion corresponds to the limit of
agent instances introduced in previous chapterf(seaula (5)) and the set of values of

agent genes is defined using formula (8).

v € [0; A] (8)
where
v —is a value of agent gene;
A —is artificial limit of agent instances used tmia overflow.
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The value of gene equal €o(zero) is considered as if particular agent tygpadt
used within the solution. Considering integer geinethe context of genetic operators,
for crossover operations the value of the gene iisctly transferred to related
chromosome, while during mutations the value ofgbee is changed to random value
within allowed range.

Finalizing analysis of genetic representation foecsfication optimization task of
multi-robot system, the number of genes within alwsome is calculated based on the

number of valid combinations of components (9).

fmy=2""1-¢ 9)
where
f(n) —is the number of valid combinations of composgnt
n  —is the number of components;
C - is the number of combinations (agents), whdochnot pass initii

level of constraints (depends on the definitiopafticular mission).

Schematic view of developed chromosome is provatetigure 5.1.

Agent type A Agent type B Agent type C

7 instances 3 instances 0 instances
\ / d t
e value of gene :muse agen
gene ype
N - Y,
Y

chromosome

Figure 5.1.Genetic representation of solution domain

As it was confirmed by analysis developed genetfresentation covers whole
solution domain. Also it allows smooth evolutiondaapplication of the genetic

operators.

5.2.Fitness function development

As it was stated before, another challenging aspdctgenetic algorithm
application is development of fithess function. Tqwelity of fithess function directly
affects the fidelity of the optimization, its pemieance and reliability. Well-designed
fitness function may substantially increase thenckaof finding a global solution and
reaching higher solution domain coverage. It cgpbka that the customer (the one who
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develops business requirements) is unable to reprabe needs in form of fitness
function correctly. Therefore a help of a modelewd be useful.

Fitness function for genetic algorithm stands faruaneric figure of merit, which
is applied to each solution candidate within theaggpe. The fithess value expresses
the performance of an individual with regard to therent optimum so that different
individuals can be compared. From the other sitteeds value has to be explicitly
calculated and should depend only on values modeiih the optimization task. For
example, relating the fitness of the grass mowalgten to stock indices of customer’s
company is not rational.

Usually a spread of solutions exists ranging ineféis from very poor to good. The
notion of fitness is fundamental to the applicatiohevolutionary algorithms; the
degree of success in their application may depetidatly on the definition of a fithess
that changes neither too rapidly nor too slowlyhwihe design parameters of the
optimization problem. The fitness function must gudee that individuals can be
differentiated according to their suitability foolging the optimization problem
(Baresel et al., 2002).

The fitness function has several important featumsich ensure good
applicability of the function. First of all, thetrfiess function has to cover whole domain
of input parameters. In other words, the fithesscfion is designed improperly if it
can't provide a fitness value for some solutiondidate.

Next, it is advised that the fitness function ha$¢ continuous. This means, that
“small” changes in input parameters are reflectetsmall” changes in fithess value. In
other words, interruptions in the fitness functame not recommended. For the most of
optimization tasks an example of absolutely invéilidess function is binary function,
which returns same value for all solution candiga®rcept the optimum. In this case,
genetic algorithm is unable to direct its evoluttowards optimum, and only occasional
application of genetic operator can lead to changeétness value. In this case
evolution can take a lot of computational time,des® of dominating random factor.

Final feature is related with the previous andestathat the fithess function has to
guide heuristic search. Genetic algorithm workskealimultiple gradient descent
optimization algorithms applied on multi-dimensibsalution domain. Thus, fitness
function has to provide a guide for evolution tmke towards better solutions. Good

fitness function is featured by multiple distinatnéss values assigned to different
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solution candidates. lIdentical fitness values witlthe single genotype lead to
dependence of random factor and to longer procgsisires.

As it was described in previous sections (see, 2h2) author uses total costs of
ownership (TCO) as universal optimization criterifam specification of multi-robot
system. It is obvious that initial evaluation obposed optimization procedure is also
based on TCO. Thereby fitness function for genaligorithm is also uses TCO as its
core criterion for evaluation of solution candidate

Next chapters describe various aspects of fithesstibn development process

and provide deeper analysis on proposed positions.
5.2.1.Fitness function simplifications

Within proposed multi-robot system specificationtimjzation procedure genetic
algorithm is used for initial evaluation of soluticandidates and for reducing the
number of options for final evaluation. It is imgdi that such evaluation is relatively
fast and rough. Therefore several assumptions iamglications are used in order to
increase computational throughput of genetic algori

First of all, two positions of TCO are distinguishel) investment costs and
2) operating costs. Investment costs estimate theuat of investments, required to
purchase multi-robot system. This includes purcleddeardware, costs for design and
production of system agents. Operating costs esith@ amount of resources required
for performing the mission. It includes resources funning the agents as well as
maintenance costs. These positions are descrilbaetails in next chapters.

Next assumption is related to a core of costs @stim models. A special function
q(n) is used to calculate a price for some entity, Whi dependent on number of
sub-entities /). An example of such entity is circuit board mangtcosts which,
obviously, depend on a number of the elements bmiognted. The list of the entities
related to the specification evaluation task isilatsée in next chapters. This chapter
provides only general analysis of this function.

According to the author’'s assumption, the functjgn) should grow nonlinearly
depending on the parameterThis assumption is enforced by a derivation aftedor
same type operations. It is obvious that any omerabkes some resources no matter
how complex this operation is. For example, mountm element onto circuit board
takes some time on production line (manipulatirddering, etc.). Similarly, it can be
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assumed that mounting another element of the samglexity on the board will take
the same time for production line. Thereby, theyeai least linear growth af(n)
function which corresponds to costs of each opamati

Further analysis reveals derivation of another @@wof costs. It is hard to imagine
an operation on production line except the simpbests, which would take the same
amount of resources without dependence on the notalber of operations performed
on the same object. For example, mounting singdmeht onto the circuit board costs
one unit of money. It would be wrong to assume thatinting 100 elements on single
board would cost 100 units of money. Most probalifierent mounting technology and
production line should be used for boards of summmexity. Therefore, in this case
another overhead of costs appears for compensatngplexity of the entity. The
author assumes that this overhead grows nonlinebelyause linear growth does not
correspond to industrial trends. In the exampleao€ircuit board mounting linear
growth would mean that mounting 10 elements instdatl will increase the costs of
production by the same amount as increasing nuwibelements from 100 to 110 (in
second case technology upgrade may be required).

Thereby, a nonlinear nature @f(n) function is argued by peculiarities of
industrial production. The author has analyzed s¢vigpes of nonlinear functions
which correspond to aforementioned description. [ftef analyzed functions includes
hyperbolic, logarithmical, power, exponential anihes regressions. The power and
exponential regressions where selected for deepaysas according to their graphs.
Hyperbolic regressions is also applicable for éertange of parameters, however it
was eliminated from analysis because of other raoitable candidates.

Initially the author proposed to use an exponemnggkession ag(n) function

(Komasilovs, 2012a), which has two coefficientee(B@mula (10)).

qexp(n) = bg * bln (10)
where
n  —number of entities (input parameter),

bo1 — adjustment coefficients.

Exponentialg(n) functions were used for initial testing of genetlgorithm and
demonstrated acceptable results. However the ad#loed an issue while defining
coefficients in order to adjust this function aaiog to desired costs model. The main
difficulty appears because the coefficients do cwtespond to any costs position and

can be specified only by analyzing the full ranfienput parameters.
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As a result, the author switched his proposal tagyofunction which has four
coefficients (see formula (11)).

Apow (M) = by + by * n + by x n¥ (11)
where
n  —number of entities (input parameter),

bo 1, — adjustment coefficients,

k  — power coefficient.

These two functions have similar trend on the ranfenterest of the input
parameter (see figure 5.2). Power regresdtmw(K) shown on the plot uses following
coefficient values:b, = 10, b; =5, b, = 0.02, k = 2. Exponential regression uses

following coefficient valuesb, = 15, b, = 1.16.
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Figure 5.2 Graphs of power and exponential regressions

The main benefit of using power regression ag(a) function is that its
coefficients correspond to costs positions, whattilitates their definition. Thereby,
coefficient corresponds to minimal costs of an tgntor costs required for starting
production. Coefficientb, corresponds to net costs of each entity. Coeffictg
correspond to overhead (in percent), which is meguifor every additional entity.
Coefficientk is used to adjust the growth trend of the overhead

Aforementioned;(n) function, which is based on power regressionyged to

model various positions of costs of multi-robotteys. These positions are described in
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details in next chapters, related to costs estonatnodels. For simplification of

equation notation the function is supplied wittalbdl and is written ag. ;41> (1).
5.2.2.Investment costs estimation

Investment costs concept used within the thesrgstéor such spending which is
required to create a robotic system for particat@gsion. Investment costs defines all
expenses required to design, implement and depldi-robot system from the scratch
into production environment and do not include exges related to the operation of the
system.

Since the purpose of the initial evaluation stegoisprocess large number of
solution candidates, proposed costs model is higintplified. The author assumes that
investment costs could be divided into severaltpm®s analyzed below.

Several concepts should be agreed before the samadysis of costs estimation
models. According to conceptual model of multi-robgstem specification the mission
for such system is defined using a list of comptsefsee 2.3). Proposed costs
estimation models assume that there are predefsmetial properties for the
components which are used as basis for derived paositions.

According to proposed estimation model investmerdts of the whole robotic
system consists of such positions as design coste @ystem and investment costs for
all agent types of the system (12). Moreover, desuagts of the system grow depending
on the number of agents in the system.

Qiny = Qsyspsgn (n) + Z QinvAgent (12)
k

where
Qinw — investment costs of the system;

dsyspsgn  — System design costs estimation function;

n — total number of agents in the system;

Qinvagent — iNvestment costs of a particular agent type;

k — number of distinct agent types in the system.

It is assumed that the investment costs of a pdati@gent type consist of design
costs of the agent type and of production costeémh instance of the agent type. The
author assumes that agents are produced on the essterprise, because of that each
agent type should be designed only once, while yrtiah costs are relevant to each
instance of the particular agent type.
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Production costs include assembly costs which stienated taking into account
the number of components within agent. Additionalgsembly costs is adjusted by
maximum complexity index of components within tlgeeat. The author considers that
assembly of complex components costs more thammébgeof simple ones. Also
production costs includes a sum of prices of coreptswhich should be purchased
from vendors (13). Complexity index and price af tomponents are defined by user at

mission decomposition step (see 3.4).

QinvAgent = QagDsgn(n) + k X (CIagAssy(n) X mT‘;iX Pcplx + Z Pprice> (13)
n
where

Qinvagent — iNvestment costs of particular agent type;

dagpsgn ~ — @gent design costs estimation function;

n — number of components within the agent;

k — number of instances of particular agent typigésystem;
dagassy ~ — agent assembly costs estimation function;

Pepix — component complexity index (property);

Pyrice — component price (property).

Graphical representation of positions of investmapdts estimation model and
their dependencies for multi-robot system is awdglaon figure 5.3. In general the

model has tree-like structure but the figure shonly single branch expanded.

Investment cost of
system
A

Investment cost Investment cost
of agent type A of agent type B

| Design cost of
\ system

[ Design cost of
agent type A

| Assembly cost Component 1 ( Component 2
| of instance 1 price price

A

Complexity
index

Figure 5.3.Graphical representation of investment costs estiation model
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Investment costs estimation model described inc¢hegpter is designed for high

calculation performance and because of that hasussimplifications. At the same

time, proposed estimation model is based on amalysreal production peculiarities

and therefore provide reliable results.

Practical example

For the practical example the author define coieffics for g(n) functions as

demonstrated in table 5.1. These functions are tseestimate various positions of

investment costs as described above.

Table 5.1 Coefficients of estimation functions for investmencosts positions

Costs position

ly

System design Agent design Agent assemb
Coefficients Asyspsgn (n) qagDsgn(n) Qagassy (n)
b, 280.00 40.00 10.00
b, 20.00 10.00 5.00
b, 2.00 0.50 0.02
k 2.00 2.00 3.00

The coefficients are selected keeping in mind theign of an entity requires

deep analysis of application peculiarities. At Hagne time assembly of an entity refers

to repeating actions which are performed accordimgprovided instructions and

therefore is less expensive.

5.2.3.0Operating costs estimation

Another position of TCO proposed for multi-robos®m specification evaluation

IS operating costs. In general, operating costsbheadescribed as the expenses which

are related to the operation of a business, ohdéooperation of a device, component,

and piece of equipment or facility.

Within the scope of the thesis the author defingsrating costs as the expenses

which are needed to perform particular mission i$igelcfor specification optimization

procedure. Operating costs of the multi-robot systehighly dependent on application

peculiarities of the system because of relatio@den mobile robots of different types

and random deviations which affect the overall paniance of the system.

The most precise method to estimate operating ®s$tsreproduce the operating

environment in the costs model. However the aimndfal evaluation step of the

proposed procedure is to reach high performancepamtkess large number of solution

candidates. Because of that some simplificatioasaasumed.
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First of all it is assumed that agents have no domen It means that agents
switch from one task to another instantly, and they utilized for 100% of time until
there are mission tasks to perform. In additiors #ssumption leads to derivation that
performance of the whole system equals to sum dbpeances of each agent. For
example, if an agent is able to complete a taskiwB0 minutes, then it is assumed that
two agents will complete the same task within 15utes, three agents — within 10
minutes and so on. In real life production totatf@enance of the system is usually
lower for loosely coupled agents, in contrast witighly coupled systems which
demonstrate higher performance.

The second assumption is used to simplify calcuiatiand it defines that
particular agent can perform only one task at tifwe. output optimization of the whole
robotic system this assumption is not acceptabde.eikample, a robot could perform
communication session while traveling to differamrking site and such improvement
could result in reduced working time and costs. Ewesv, taking into account the aim to
evaluate large number of solution candidates tlisumption reduces calculation
complexity and speeds up processing.

According to proposal operating costs include symbsitions as energy,
maintenance and eventual replacement expenses EAgrgy expenses are
generalization of spending related directly to afien of agents which includes fuel,
electricity, for some applications time, etc.

Maintenance expenses include spending which aredinettly calculated from
agent actions but still required for completing thission. These include staff salaries,
regular service, infrastructure, deprecation ameist costs. Maintenance costs per time
unit are estimated depending on the number of ageithin the system. The author
assumes that maintenance of a complex system s expensive than maintenance of a
simple system. The total operating time of the whmstem also affects the amount of
maintenance expenses and is equal to the maxinmehtopy time of agents of the
system.

Eventual replacement costs stand for unplannednsese which could occur
during system operation. This includes agent faweprecation, disasters, accidents
and other. Because of occasional nature of thissgoagsition the author propose to
apply risk justification installments on regularsisa The amount of installment depends

on investment costs of whole system which is medifby eventual replacement rate
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coefficient. These considerations are confirmegasgumption that within long enough

period of time every element of the system wilkbplaced.

Qoper = Qenrg + (ant(n) X tsys) + (Qinv X Crqte X tsys) (14)

where

Qoper — operation costs of the system;

Qenrg — energy expenses of the system;

Qmnt — maintenance costs estimation function;

n — number of agents in the system;

tsys — total operating time of the whole system;

Qinw — investment costs of the system;

Crate — eventual replacement rate, defined by mission.

Energy expenses form major part of operating coftthe system. Also it is
obvious that this position is highly dependent @erating time of each agent of the
system. In order to simplify further analysis arstadct power and time units are used
for defining energy expenses. Thereby consideretceqas have operating power
consumption and operating time indicators.

According to the concept of the specification ofltiatobot system, there are one
or more tasks defined for global mission of thetesys Each task define features and,
which is more important, the amount of work to bEfprmed by the system. Each
agent of the system may be suitable to perform ameultiple tasks. Thereby, the
energy expenses of the whole system depend onwimeh particular agent spends
doing particular task.

Additionally each agent has its own power consuampindicator which depends
on power consumption properties of its componehte author assumes that some
amount of power is lost for maintaining the agemter facilities, like infrastructure,
wiring, etc. The amount of loss is estimated basethe number of components within
the agent. Power consumption properties of the comptis are defined by used at
mission definition stage.

Final energy expenses are calculated using forfi@awhich defines sum of all

aforementioned derivations.
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Qenrg =) ). (tagm X > (Poow + qpowwss(k))) (15)
n m k

where
Qenrg — energy expenses of the system;
n — number of agents within the system;
m — number of tasks within the mission;
tagent — agent operating time doing particular task;
k — number of components within the particular agen
Bow — power consumption indicator of the componenbgprty);

dpowLoss — POWer loss estimation function of the agent.
Graphical representation of positions of operatiogts estimation model and
their dependencies is available on figure 5.4. Soepeated branches of the tree are

collapsed.

Operating cost of
system
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Maintenance
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System Replacement
operating time rate

A

/ Replacement

| Power loss of Agent operating
agent

time
Component 1 Component 2
power power

Figure 5.4 Graphical representation of operating costs estintaon model

Operating costs estimation model described in tbieapter has various
simplifications, but at the same time providesatgke results. Developed operating costs
estimation model has several input parameters etfias component properties.
However one unknown variable is left uncovered.tTibaoperating time of an agent
doing particular task. Estimation of this paramesemnot trivial and is described in next

chapter.
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Practical example

For the practical example the author define coieffics for g(n) functions as
demonstrated in table 5.2. These functions are tseestimate various positions of
operating costs as described above.

Table 5.2 Coefficients of estimation functions for operatingcosts positions

Costs position
System maintanence Agent power loss
Coefficients Amnt (TL) QpowLoss (n)
b, 8.00 0.00
by 2.00 1.00
b, 0.10 0.01
k 2.00 2.00

System maintenance and agent power loss is estipatetime unit. Because of
that the coefficients are relatively small, butidgrworking time of the system these
positions obtain value.

An eventual replacement ratg,;,, was selected equal to 0.005 for practical
example. This results in moderate eventual replaoéncosts for relatively long

missions for robotic system.
5.2.4.Agent operating time estimation

As it was clarified in previous chapter the mod®l dperating costs estimation of
multi-robot system requires the time estimation éaich agent in the system. This
estimation becomes non-trivial for missions thatirde more than one task and has
multiple agent types. However the proposed speatibo optimization procedure for
multi-robot systems is expected to be universaougome degree. Because of that more
complex combinations of mission tasks and agerasghould be considered.

The main question in agent time estimation is howassign working time for
particular agent keeping in mind the operating c@étthe whole system. The simplest
case implies a mission defining a single task feingle agent. Obviously the agent will
spend as much time as it needs to complete theeteimount of work. Here appears
parameter of agent which defines the speed of dbimgvork — agent performance.

In more complex scenario the system of two agehteseosame type will be able
to complete the same amount of work twice as Mete complex example implies that
system contains agents of multiple types. In thseceach agent will complete amount

of work proportional to its performance while thpeoating time will be even for all
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agents. The author assumes that highest timeaitidiz of an agent is one of the key
factors for cost effective system.

Contrary to the previous example, a mission withtiple tasks requires more
complex agent time estimation methods. In cashefe are dedicated agent types for
each task the estimation of operating time coulgdréormed within multiple iterations
of simple approach. However an ambiguity appearsafgents which are capable to
perform multiple tasks. It is assumed that ageats gerform only one task at time,
therefore performance and operating costs of agbats to be considered while
assigning tasks to agents.

The operating time estimation for agents could beestigated as classical
transportation planning problem. From the one gditkre are mission tasks which
should be completed. In terms of transportatiosdhse consumers who request certain
amount of goods to be delivered. From the othee sitere are agents capable to
perform one or multiple tasks. These correspondugpliers of various goods. Each
route from supplier to consumer has its delivericgr(distance) and capability (car
type). In terms of agents these are operation evgtsvorking performance of an agent
per time unit. The aim transportation is to deligrequested goods in cheapest way.

Transportation planning problems are widely ingges within a field of
logistics and there is a bunch of methods usedlie ghis type of problems. The main
problem of their application is that time estimatior agents should be performed for
all specification solution candidates. In termsgehetic algorithm such operating time
estimation should be done for all chromosomes tiftoall generations of evolution.
There is number of approaches tested by the auttescribed below with
supplementary analysis.

The most common and simplest way to solve aforeiomed transportation
planning problem is usinlinear programming (LP). The problem is converted into a
set of mathematical inequalities (constraints) ain@ctive function. The author hasused
Simplex (Nelder, R. Mead, 1965) method for findswution. This approach produces
fast and reliable results and in most cases id#se selection for problems of similar
type.

However there is an issue in application of LP dperating time estimation of
agents. LP uses only operational costs of parti@adant doing certain task and produce
solution, where cheapest agent is exclusively assigo the particular task. However

the total operating costs of the whole system d¢ostalso maintenance and replacement
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positions. These positions depend on the operstimg of the system which in turn is
calculated from operating time of agents. Theregmition found by LP is optimal in
terms of energy costs but not in terms of operatmgjs of whole system.

In order to overcome aforementioned drawback amtthli positions are added to
objective function thus transforming it twon-linear programming problem (NLP).
These types of problems are more complex and gateaf solving methods depends
on peculiarities of problem definition. The authloas tested Generalized Reduced
Gradient (Lasdon et al., 1978) method for NLP peablkolving. The obtained solution
had high accuracy, time estimation was made taikittggaccount operating time of the
whole system. As a result the tasks were distribaeong agents in order to reach
higher utilization of their functions and to low&stal operating time of the whole
system. However the performance of NLP was not @abée, time estimation for
single solution candidate took about 15 secondsawerage on modern PC
(CPU x4 @ 3.3 GHz, 4GB RAM). Taking into accountcplerities of the genetic
algorithm and the fact that each solution candidzs to be evaluated on every
generation the processing would require unfeasablaut of time even if executed on
computational clusters (about 95 CPU-years).

Another approach tested by the author implied appbn ofanother instance of
genetic algorithm for working time estimation (Komasilovs, Stalidzar2012a). For
each solution candidate separate optimizationitagdkfined for genetic processing. The
setup of secondary genetic algorithm softwarensedi on fast calculation therefore size
of the population and number of the generatiorsetsto minimal values. An accuracy
of obtained results is comparable with NLP methatide processing speed is faster.
However the overall performance of the approadhtilisunacceptable.

The author proposed own algorithms for operatimgetiestimation inspired by
greedy approach The results produced by NLP and secondary geakgarithm could
be considered as optimal. These results had agtyromarked feature: operating time
was distributed among agents fairly evenly. Paldity this is explained by difference
between agent energy expenses and maintenanceo€dbkts system, which is usually
several times bigger than the first position. Theeethe author has used this feature as
inspiration for development of fast time estimatadgorithm.

The straightforward greedy approach tested by thikoa implies assignment of
operating time to the cheapest agent-task combimatiaking into account total system

operating time affected by operating time of eagena the algorithm has iterative
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nature. In each iteration only single unit of tinseassigned to cheapest agent-task
combination. Next iteration assigns operating titbeagent-task combination with
minimal current operating time. In other words @pielg time is assigned to such
positions which lead to minimal increase (delta}aifl operating costs. As it is usual
for greedy algorithms such operating time assigrirteauds to locally optimal solution.
Using this approach the author was able to rea&®olfhark of NLP results on the
same testing sets.

The author has tested another, manmeellectual greedy approach for the
estimation of the operating time. At the beginnthg algorithm assigns all required
operating time to the cheapest agent just like pPr@ach does. Then iteratively
distributes the time among other agents taking atoount decrease of the total
operating costs. Reverse optimization directiorcigl@se of costs) demonstrates fine
result &2% difference from NLP results on the same testing)s&kemarkably, on
certain testing sets this approach demonstratedrbvesults than NLP algorithm.

However aforementioned algorithm leads to poor ggarance of the whole
evaluation system. The main reason for this isaiteg nature of the operating time
estimation algorithm. This algorithm is well suit@tfor simple missions with relatively
small number of time units required for completilgm. But for practical example
considered within the thesis amount of work for thbotic system is calculated in
thousands of time units. Processing time incredspsnding on the expected amount of
time required to complete the mission.

Taking into account operating time estimation pecities andeven distribution
of operating time among the agents the author @@ghoo use average values. Thereby,
an average amount of time was calculated basednoira of required work and total
performance of the whole system. Then rounded liesaare assigned to each agent
(16).

tagent = [Wgoal/z pagm‘ (16)
where ’
tagent — operating time of an agent for particular task;
Wyoal — required amount of work within particular task;
n — number of agents in the system;
Pagent — performance of an agent for particular task.
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Tests demonstrate good performance and at the SBamadhe approach provide
fine results. The author reached mark of 115% ofPNilesults which could be
considered as acceptable taking into account psougsspeed and amount. This
approach provides fine results for common missiefindions. The difference from
optimal result increases in case if there are pleltypes of agents suitable for the same
task but with very different performance indicatars fact such case is not common
because agent performance is calculated based atarde of its components and,
according to the concept of solution, it is unlkéiat the agents composed from totally
different components will be suitable for the saask.

Current chapter provides analysis of various apgres for estimation of
operating time of agents. The author considere@alinprogramming, nonlinear
programming and secondary genetic algorithm asagloptimization methods, two
types of greedy algorithms. Finally mathematicaletiestimation was proposed based
on average performance of agents. This operatinge testimation approach is

embedded into fitness function used by geneticralgu.
5.2.5.Additional fitness value adjustment positions

In addition to aforementioned investment and ojiggatosts positions fithness
function used for genetic algorithm includes selgrstifications which are not directly
related to expenses.

Fitness value of a chromosome is used to evaluaticplar solution candidate
and to rank it among other candidates. Accordinigstéitness the solution candidate is
selected (or not) for next generations. Therebylugam is guided towards global
solution using fitness value of its individuals. dféng in mind aforementioned
considerations the author proposes to use spedaistenent positions in fithess
function in order to eliminate blind evolution bcdres on early stages.

There is a challenge to develop such indirect eidis for solutions candidates
which could be used to predict blind branch of atioh. The author has performed an
analysis and found one very trivial indicator.

According to solution concept there are severasuvhich should be fulfilled by
solution (see 2.3). First of them define that afided components should be used
within the solution at least once. Developed genetpresentation of solution covers

full solution domain (see 5.1). However, it alsdoak combinations with certain
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components missing. For example, there is a p@ssdlld solution candidate with only
single agent. And if this agent is not composednfial defined components, then all
other components will be missing in a solution asol. Therefore such solution
candidate could be considered as invalid and calilménated as early as possible.

In order to implement aforementioned derivatiores dlathor proposes to increase
costs of such system artificially thereby decregé#is fitness and a probability that such
solution candidate will be selected for next getnens. From the other side it is
possible that there are multiple incomplete sohgiavithin the population and they
should be compared to each other.

In order to ensure comparison of incomplete sofuteandidates the author
proposes to use a numeric indicator showing thel leffincompleteness of particular
individual. The number of missing components igahle for role of such numeric
indicator: the larger number of components is migsthe more incomplete the
solutions are. This leads to situations, that smhst candidates with missing single
component are considered better than the candidétte missing ten or more
components. Finally, the adjusted fitness valueificomplete solutions is calculated

using formula (17).

Qinc =n X Cinf (17)
where
Qinc — fitness value for incomplete solution candidate;

n  —number of missing components;

Cins — infinite costs constraint.

Aforementioned fitness value adjustment is embeddtfitness function used
by genetic algorithm for initial evaluation of sjfemations of multi-robot system.

Practical example

For the practical examplé;,, constant was selected equall@d®. This value

ensures that for incomplete solutions costs wilalveays higher than for valid but not
very successful solutions.
5.3. GAMBot-Eva software

Specialized software was developed by the authdininvicurrent research for
initial evaluation of specifications of multi-robsystem -GAMBot-Eva which stands

for Genetic Algorithm basedEvaluation of Multi-Robot System Specification. The
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software provides functionality which supports exem of 5" step of the proposed
specification optimization procedure and perfornesristic search in wide solution
domain. There is an implementation of genetic allgor within a kernel of the system
which carries out all required processing.

Software is developed usintava SE platform. Therefore it is available on any
operating system which supportdava Runtime EnvironmentSoftware uses
JGAP - Java Genetic Algorithms and Genetic Programmingkage (Meffert et al.,
2012) as a kernel for genetic processinySQL database and its client side JDBC
drivers are used for persistence storage faciligedtware source code is available on
public project site (Komasilovs, 2012c).

Next chapters describe design @GAMBot-Evasoftware in details and provide

analysis of various aspects of its implementation.
5.3.1.Architecture of GAMBot-Eva software

This chapter describes general requirements anditectural design of the
GAMBot-Evasoftware. The main aim of the software is to pdeviiniversal processing
package for the initial evaluation of specificatiofh multi-robot system. Another
important requirement defines that the softwareukhallow batch processing on
dedicated server.

Taking into account aforementioned considerationsrghitectural design of the
system includes three concepts as follows (Komesil2013):

v’ processing module, which executes genetic algoréimeh manages evolution of
its population;

v presentation module, which provides an user interffor viewing processing
results;

v’ storage module, which ensures persistent dataget@ad exchange between first
two modules.

The software is designed in a way to allow asynobus processing of multiple
populations of genetic algorithm. This is inspireg island model for advanced
processing of genetic algorithm (Whitley et al.,.999® The software also provides
access to the intermediate results. Thus usereastaldollow the processing of genetic

algorithm online.
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In order to increase the versatility of the systeim designed to be parameterized.
It allows evaluation task definition via parametéits. This makes the system very
flexible and enables execution of multiple differ@valuation processes at the same
time in parallel. Graphical representation of theh@ecture of theGAMBot-Eva

software is available in figure 5.5.

Presentation
module

Storage
module

Processing
modules

Figure 5.5GAMBOot-Eva software modules

The design of processing and presentation modslegscribed in details in the
next chapters. Storage module is implemented usiagjonal database. The software is
not limited to any specific database managementesysinstead it utilizes JDBC
interfaces and drivers to interact with the datab&®r testing purposes the author has
usedMySQL5.5 database management system which provide tabteperformance
and at the same time do not require dedicated is@tweas executed on developer level
PC, CPU x4 @ 3.3 GHz, 4GB RAM).

5.3.2.Processing module o GAMBot-Eva software

The aim of the processing module of the softwate ioordinate the execution of
the genetic algorithm used for initial evaluatidntlee specification of the multi-robot
system. Obviously, the kernel of this module isamiged by the genetic algorithm
engine. The author us@&SAP framework which provides tools for implementatioh
genetic algorithm engine in the custom software.

One of the most important concepts IBAP is the configuration of genetic
algorithm. Special singleton object is created tbis purpose and it holds all

information required to start genetic processing.
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First, configuration defines the use of techniaadl gow level objects in genetic
processing. This includes such concepts as breeddéish are used to create and
maintain the population of chromosomes, random rexngenerators, which could use
various randomization approaches, event managdishwnanages event notification
in the system.

Next, various parameters of genetic algorithm aBndd in the configuration.
The list includes such parameters as populatiom &izbe used by genetic algorithm,
relative amount of chromosomes which are trangfetoe next generations, allowed
variations in population size, chromosome poolipgjans and other parameters. These
parameters directly affect the performance andloépes of the genetic algorithm.

The next group of parameters defines genetic fanstapplied during evolution
of genetic algorithm. One of the most importantchions is the natural selection, which
transfers the fittest individuals to the next gatiens. For genetic algorithm this
function is mandatory. Also there should be attlea® genetic operator for modifying
individuals during evaluation. Any genetic operawallowed inJGAPframework. The
most common operators are mutation and crossoves. cbnfiguration defines also
application parameters of genetic operators (frequerate, etc.).

Another important configuration parameter is thenglk® chromosome. This
parameter is highly important because it definemetie representation of the
optimization problem. A single chromosome is créatath all relevant genes. During
genetic processing this chromosome is used as pls&on breeding population.

Finally, the fithess function is defined in the @igaration. Technically fithess
function is an object which implements special erstclass with protected evaluation
method. Thereby separate class is defined ford#trignction, and an instance of it is
passed to the configuration of genetic algorithmhe Tfitness function directly
implements the costs estimation model describgulemious chapter (see 5.2). However
in default implementation afGAP framework chromosomes with larger fithess values
are considered better (maximization task). But tfug specification evaluation task
smaller fithess values mean better solution (castsabout to be minimized). Because
of that special fitness evaluator with invertediésgvas implemented.

As it is shown above the configuration object ohec algorithm holds all
required information required for genetic procegsinhereby a genotype (population)
is created according to configuration. Initially éonsists of randomly generated

individuals. Next, evolution takes place which xeeuted iteratively or in batch. During
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the evolution the information of the whole popudatiis available, however only the
fittest chromosome is usually retrieved from th@udation. It is considered as solution
at particular stage of evolution (generation).

In addition toJGAP facilities special concepts are defined in orderstipport
genetic algorithm processing and to store resut®raing to solution design. These
concepts are defined by the author and are relerdptwithin the scope of the thesis.

First, the author defines a project for each exenudf initial evaluation of
specification of multi-robot system. The projecused as wrapping entity for all other
concepts and it defines the evaluation task foegieralgorithm. In addition to various
parameters described below, the project storesnyess of genetic algorithm
configuration and costs estimation model.

According to solution concept, the mission for robsystem is defined using
components. Thus the project holds a list of coneptsrand their properties which are
relevant to defined mission. In addition the intemponent requirements are defined
removing initially invalid solution candidates fropnocessing.

By analogy with the components the project holdsdsn of mission tasks. The
main reason of defining mission tasks at initiahletion stage is because operating
costs estimation model requires such parameteemaant of work to be done and
performance of agents doing particular task. Defins of mission tasks include
general parameters, references to mandatory comisorend their performance
indicators.

The concepts described above are defined by usearanprovided as an input to
processing module using XML configuration file (seenex 1). There are additional
technical concepts used for various aspects of eggieg (Komasilovs, 2012b).
Thereby, the list of agents is generated from carepts taking into account their inter
requirements. Special type of genes is defined hvbambines integer gene properties
and agent specific facilities. These genes are usedenetic processing. Caching
technique is used for derived values in order &edpp processing.

Graphical representation of conceptual design o€gssing module is shown on
figure 5.6. Orange boxes correspond to the conceptspecification optimization
solution (see 2.3). Blue boxes correspond to teethmmbjects developed exclusively for
GAMBot-Evasoftware. Green boxes indicate external objectsoned fromJGAP

framework.
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Figure 5.6 Conceptual design of processing module

In addition a lot of technical objects were createadrder to implement certain
programming templates and to support desired fonatity of the module. These
objects are not shown on conceptual diagram buy thee used to make the
implementation of the module flexible and highlytendable. In total there are 34 new
Javaobjects are defined which include classes, intedadesktop forms and internal
libraries.

Aspects of persistent storage of processing resultsalso worthy of special
attention. The main aim of the data persistende @llow deep analysis of evaluation
results on later stages. Thus the system shoul@d sttb data obtained during the
heuristic search. In order to reproduce the eviangbrocess the author stores initial
conditions before starting genetic processing. &g this means recording of full
project definition including the list of componeraad mission tasks, their properties,
derived agents, coefficients of costs estimatiod@hand other information.

Next, information about genetic evolution should $&tered. The best option
would imply recording the state of all chromosonees every generation. However,
taking into account the amount of data to be stahed author found this approach
unpractical (the time spent for persisting inforim@atabout single generation extends
the time required to calculate it).

The author has tested several data storage apgsaci found that information
about all chromosomes of population is nearly i sseéxcept the information about the
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fittest chromosome. Next, the author has noticemt the fittest chromosome (the

solution) is changing frequently at the start ohefec processing and almost stops
changing later during the optimization. It is urs@aable to store the identical best
chromosomes of every generation. Therefore the e@mphted approach imply

recording only of such generations when the fitthsbmosome changes.

Moreover, in order to speed up processing of genatgorithm multiple
generations are executed in batches. The sizetol lfthe number of generations to
execute as single entity) changes dynamicallyialiytthe size of batch equals to one
generation. During the evolution if the fittest @mosome is not changing then the size
of batch is increased by one up to pre-defined mari batch size. This approach
ensures small batch size at the start of evolutiban the fittest chromosome changes

frequently and at the same time speeds up progessian the changes are rare.

Practical example

During practical testing the author hasused varioau®binations of parameters
provided to processing module using XML configuatifile. The most important
practical experiments and their results are andlymechapter 5.4. The general setup
and parameters of the processing module is descinbe following paragraphs.

The size of population of genetic algorithm is 200 species. This value is
found as a compromise between processing speedtrendliversity of solution
candidates in the population. Larger populations arocessed much longer, while
smaller populations evolve slowly to global optimamd tend to stack in local extreme.
The limit of generations is set fox 10°, for some experiments it is extended up to
1.5 x 10°. The maximal size of evolution batch (the ste®eisto103.

During evolution a number of genetic operators ppli@d. The crossover is
applied t0o35% of chromosomes. Mutation is applied to ab@%4 of chromosomes in
average. The natural selection transf@$8o of chromosomes to the next generation
depending on their fitness value.

In addition duplicate chromosomes within the popata are disabled. That
means that only unique solution candidates aretaiagd. If two equal individuals are
found in the population, one of them is replacethwandomly initialized chromosome.
This option highly improves solution searching spéecause identical chromosomes
tend to fill up whole population with locally optah solutions and stall the search

process.
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5.3.3.Presentation module ofGAMBot-Eva software

The second module oGAMBot-Evasoftware is presentation module, which
provides a graphical interface for user to view amélyze the results of the initial
evaluations. In general it uses the main concepspecification optimization solution
and graphically presents the data which is gengrayethe processing module of the
software.

The main feature of the presentation software igrawvide a tool for monitoring
and analysis of asynchronously running evaluatimtgsses. The module fetches data
from persistent storage and presents it graphidallyser. Keeping in mind defined
application peculiarities three different views adefined in user interface of
presentation module.

The first is the process view (see figure 5.8),clhprovides an overview of the
running or already finished processes on compurtakiserver. In general this view
presents the information from the project concegingd in the previous chapter. This
includes thdd of the project, start and end time of executiolsoAhis view specially
indicates currently running processes. The latefstrination about these processes is
loaded when it is available in persistent storage.

The second view is the evolution view. It providegraphical representation of
evaluation process and shows the chart of solufffittast chromosomes) of particular
generation. The evolution view uses extetdtadeChartengine for low level graphical
processing and chart drawing. Several special agpes are used to increase
readability of the charts. One of them is the l@barical scaling of axis. As it was
described above the frequency of changes in fithsbmosome is decreasing as it
approaches the end of evolution. Therefore it &soaable to show finer details at the
beginning of the process when changes are frecqarehto show less details when the
changes are rare.

In addition the evolution view supports speciallgsia supporting features. One
of them is the possibility to show multiple procesn the same plot. This enables
comparison of the results, processing dynamicspandmeters of different processes.
The other feature is the zooming facility whicloals analyzing only particular spots of
the graph in much finer details.

The third view is the solution view. It displaysetdetails of a particular solution

selected in the evolution view. In general it shdhe specification of the multi-robot
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system. This includes the types of agents uselarsystem, their components and the
number of agent instances of each particular type.

Graphical representation of conceptual design e$gmtation module is shown on
figure 5.7. The orange boxes correspond to theapmircof specification optimization
solution (see 2.3). The blue boxes correspondctmnieal objects developed exclusively
for GAMBot-Eva software. The green boxes indicdigeots of external framework.

Figure 5.7 Conceptual design of presentation module

A screenshot of user interface of presentation rieoguavailable on figure 5.8.
There are all three views of the module demonstratethe figure. Two projects with
different parameters are selected for chart. Dextadinalysis of these projects and their

parameters is provided in next chapter.
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Figure 5.8.Screenshot of user interface 0cGAMBot-Eva software

GAMBot-Evasoftware described in this chapter is developed dsol for the
implementation of step 5 of the specification ofi@mtion procedure which implies
initial evaluation of a specification using heudsinethods. The kernel of the software
is an implementation of genetic algorithm whichaiheuristic search approach. The
software has modular design and it is main prongssnodule is intended to be

executed on dedicated computational server.

5.4. Analysis of initial evaluation results

The implementation o6AMBot-Evasoftware used for initial evaluation of the
specification of multi-robot system is described pgrevious chapters. This chapter
provides an analysis of results obtained usingdbitvare.

The experimental mission is described in detailprgvious sections (see 3.4). In
general the mission is defined using 10 componants2 tasks. There is a number of
inter-component requirements defined as well ireotd eliminate invalid component
combinations from a processing in early stages.

For the first experiments during debugging the vgafe the author used strict
constraints in order to speed up processing. Thabeu of possible agent types

combined from the defined ten components is equal024 (see 4.1). Because of
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compatibility constraints the number of valid agéypes was reduced down i1,

while 973 agent types were considered as invalid. In faenhtimber of agents equals to
the length of the chromosome (genes). For the daperiments the constraints were
looser allowing more variance in solutions. Thetethhe number of valid types of

agents was equal ®11 (see 4.2). Additional experiments are presentethitex 2.
5.4.1.Parallel execution of multiple evaluation processes

The very first experiment is intended to test thehdwvior of the software
executing multiple parallel processes in genenad, @ recognize the overall dynamics
of genetic evolution in particular. The author exted heavy variations in processing
results which are usually common for genetic atbani due to random mutation and
crossover factors. However, obtained results detratesamazingly similar results for
all five processes. The evolution tends to optimastution rapidly and all processes
reached stable solution within 500 generations figege 5.9). As it is seen from the
chart further evolution up to 10 000 generatiorssiited only in few changes in solution

with minor decrease of costs.
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Figure 5.9.Five identical evaluation processes executed in radiel
Source. GAMBot-Evasoftware

During this experiment the modular design of tB&MBot-Eva software
demonstrated its advantages. First, it was possiblexecute multiple calculation

processes in parallel. The only common aspect wesigtent storage module, which is
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implemented usinlySQLDBMS and it supports parallel transactions. Ineothspects
the processes are completely independent and castabted or ended without any
impact on others.

Secondly, it was possible to analyze the resultsvaluations which are still in
calculation process. This approach allows receigady results and based on them it is
possible to terminate particular process in cagts ibehavior does not correspond to
expected ones.

And finally, the modular approach, especially tlesgbility to execute multiple
calculation processes in parallel, is very wellteuli for dedicated computation
hardware. The author executed the experiments coiwhae with relatively slow but
multiple CPUs (in this case x16 @ 2.0 GHz), whiebulted in very good performance

in parallel processes.
5.4.2.Comparison of strict and loose compatibility constaints

The second experiment performed by the author ntesded to compare results
of evaluation of simple and complex missions wittgpectively, strict and loose inter-
component compatibility constraints. In additiore tbehavior of theGAMBot-Eva
software was tested for mission definition closeg@a application. As it was stated, for
simple mission there were uséd valid types of agents while for complex mission
there were defined11 valid types of agents. The results of evaluatibthese missions

are presented in figure 5.10.
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Figure 5.10Comparison of simple and complex mission evaluatis
Source GAMBot-Evasoftware

According to the obtained optimization results &ncbe concluded that the
behavior of the software is stable on complex rarssiefinitions similarly as on simple
ones. But the dynamics of the evolution is différfeam complex missions. As it is seen
from the chart solution is improved through wholelation. The evolution is executed
up to 500 000 generations and according to thedttée solution would improve
further. This indicates a proper implementationfifess function which guides the
evolution towards the global solution and doesstatk in local extremes.

The processing time greatly increased for the cemphission in comparison
with the simple mission. The full evolution of teenple mission was processed within
an hour, while the stable solution was reachediwitinst five minutes. Contrary, the
full evolution of the complex mission took two dagse the same hardware. Despite
increased processing time the author believestim@pproach is much more suitable
for such kind of evaluation in contrast to testewgery possible configuration of the
system on real hardware or in simulations.

There is another notable conclusion made uponetkperiment. Despite the fact
that the initial solution is much worst for complexssion, the evolution tends to the
same final solution. This could be explained by ghmilar mission definitions for both
processes which have the only differences in therdcomponent requirements.

However this indicates the stability of the implertaion of the genetic algorithm.
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5.5.Results of the initial evaluation

The results of initial evaluation (the solution datates) are being stored in the
persistence module of th@AMbot-Evasoftware and are available for analysis and
interpretation. In theory any solution candidatesild be selected for model based
evaluation (step 6 of the optimization procedutépwever the author recommends
selecting the fittest candidates obtained duringgion of the genetic algorithm.

In general, the software provides a descriptiothefsolution candidates in terms
of solution concepts. In other words, the list giemats (their components) and the
number of their instances is obtained. System ahalymodeler is responsible for the
interpretation of the definition because it higllgpends on peculiarities of targeted

industrial area.

Practical example

For the demonstrative grass mowing example theoautls selected several
solution candidates with representative featuré$eii@nces of the estimated total costs
of ownership (the fitness) among these solutiordickates are withii0% of the total
amount. Thereby the solution candidates are nagllgdeasible (see table 5.3).

One of the selected solution candidates (A) defihigihly distributed and
redundant solution. There are 8 agent types and 18 agent instandesainwithin the
solution candidate. The components are distributeelvenly between the agents and
overlap each other. There are 13 agents capabtgdes mowing, 16 agents are capable
for transportation and only 3 of them are capalole Unloading the cargo. Global
processing facilities are distributed among thded#int types of agents, while for
navigation processing stationary agent is dedicated

The other solution candidate (B) definesar homogeneousspecification for
multi-robot system. There are 10 universal ageapsble to perform the grass mowing
as well as the transportation tasks. In additionagents are dedicated for the
transportation task only and single agent perfoamaility function and is capable for
the transportation task and for unloading (unloadstainers of other agents).
Processing facilities are evenly distributed amoniyersal agents.

Another solution candidate (C) selected by the @utldefines clearly
heterogeneousspecification for multi-robot system. There are 9 agents dedddor
grass mowing task alongside with 5 transportatigenés. In addition one of the
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transportation agents is equipped with unloadirgifiés. Notably that the processing
facilities are distributed among the transportiolgats only.

Table 5.3 Number of agent instances for selected solution rdidates

Solution candidate

Agent type A B C
Mowing robot - - 9
Mowing robot with processing facilities 1 - —
Transportation robot 3 4 2
Transportation robot with processing facilities 1 - 2
Transportation robot with unloading and processing
facilities 1 1 1
Mowing and transportation robot 9 8 -
Mowing and transportation robot with processing
facilities - 2 -
Mowing and transportation robot with unloading
facilities 1 - -
Mowing and transportation robot with unloading and
processing facilities 1 - -
Stationary processing unit 1 — -
Total costs of ownershij (monetary units) 488 419| 462 179|455 026

According to the estimation of total costs of ovaingp the third (C) solution
candidate is selected for fine evaluation usingutated models. Of course, the results
of the initial evaluation are highly dependent ba estimation model of the total costs
of ownership. The parameters of the model shouldubed for a targeted industrial
domain before application in a production environméforementioned fine-tuning is
out scope of the thesis. Although, achieved reshitsv successful application of the
heuristics based evaluation approach for the detraiive grass mowing example

considered within the thesis.

5.6. Summary of the section

This section provides analysis of heuristics baséthl evaluation step of the
proposed specification optimization procedure (sBp Genetic algorithm has been
adopted by the author for the specification optatian task.

The model for estimating the total costs of owngrstas been developed by the
author. Multiple techniques are used for the egtoneof the operating time of the each
agent within the system.

The genetic representation of the solution domaideiveloped using integer type

of genes instead of bit genes used in classicdemmgntation of the genetic algorithm.
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The fitness function for the genetic algorithm &séd on the total costs of ownership
estimation model and adds special penalties forropgr solution candidates.

Population of the genetic algorithm is being evdlwsithin the batches with the

variable size, which is being adopted during thecexion. This approach improves
processing performance of the genetic algorithm.

Aforementioned features are implemented within @unsGAMBot-Evasoftware
developed by the author, which supports executiothe initial evaluation step of the
procedure. The software allows execution and mdngo of multiple parallel
evaluation processes as well as provides usefantefor accessing evaluation results.

The author has experimentally tested various aspefcthe software and the
heuristics based initial evaluation step of thecpdure in general. The results obtained

for the demonstrative example have been analyzednderpreted.
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6. SIMULATION BASED EVALUATION

The final computational phase (step 6) of the pseplospecification optimization
procedure (see figure 2.2) stands for simulatiosebdaevaluation of multi-robot
specification solution candidates. This step ingplieat the set of considered solution
candidates is relatively small and it can be preedswithin reasonable period of time.
Simulation based evaluation is proposed as presiakiation method which is applied
to solution candidates obtained during precedingibtic evaluation step.

The main goal of this step is to reproduce an emwirent close to real-world
situation and to test selected solution candidates The simulated environment is
intended to avoid the development of a real robetistem for tests. Each solution
candidate would require full amount of investment aperating costs for testing it
which is not acceptable for an industrialist. Imgeal, simulation techniques have been
used for similar evaluation and prediction task® ah other research domains of multi-
robot systems (Dawson et al., 2010).

Modern simulation tools in combination with availtomputational hardware
allow high fidelity of reproduction of real-world onditions and acceptable
performance. Also usual practice implies reproducdf only representative features of
the real world problem. Because of that the sinealanvironment is simplified, and an
interpretation of results is translated to realld/@ituation.

Another general goal of the simulation based evmnastep is to test the
optimization procedure itself. As it was descridegfore the procedure has iterative
nature. The results of both evaluation steps aatyaed (step 7 of the procedure) and
further decisions are made. In general, the resiilteuristic evaluation and simulation
based evaluation are compared. If the differendevden these evaluations extends
requirements of acceptable fidelity (step 8), theegon estimation model of heuristic
evaluation has to be modified and the next iteratd the heuristic evaluation takes
place. Thereby both the optimization results andeudying models are improved
iteratively.

There is another aspect of the simulation baseth@wan step which is worth to
mention. The main goal of the current researchoigropose and demonstrate the

specification optimization procedure. Therefore practical implementation of the
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simulation based evaluation is not universal anclasely related to the demonstrative
mission.

Following chapters describe the simulation baseduation step in details. They
provide analysis of simulation environment andsesup for practical example, special

control software for simulated robots and well aalgsis of results and discussion.

6.1. Simulation environment setup

The sixth step of the specification optimizatiorogedure stands for precise
simulation based evaluation. Generally, the implaaigon of simulation based
evaluation step could be divided into two aspectsdel development for considered
multi-robot system using tools provided by simwatienvironment and execution of
simulations to assess the performance of a paaticsipecification of multi-robot
system. This chapter provides analysis of setup sohulation environment
(development of the model). Next chapters desdhbgeculiarities of its execution.

The setup of the simulation environment impliesedepment of models for all
agents of the considered multi-robot system as aseth model for the environment of
the mission. In addition the agent models shoulddeloped in the way which allows
independent gathering of various performance paensielike consumed power or
operating time. Environment model has to refleetfdatures of the real environment of
the mission and has to respond to the actionsechgients.

There is a wide spectrum of simulation softwareilalsbe for general models as
well as for models specific for robotics domaineidare high-end simulation packages
that provide maximized accuracy of simulation, fostanceWebotsdeveloped by
Cyberbotics Ltd Other packages offer great usability and utitibpls, for instance
Microsoft Robotics Developer Studidhere are also open-source simulation packages
offering various interesting solutions which are awailable in commercial software.
To compensate poor support open-source packages pfovide higher degree of
customization and control over the package.

The author has usdelayer/Stagesoftware bundle as a simulation package. The
examples considered within the thesis are devel@ptdn this packagePlayer/Stage
IS an open-source software set developed wiilie Player Projects widely used for
multi-robot and distributed sensor research (Gerkeyal.,, 2003). The author has
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selected this software for final model-based euvauastep taking into account several
advantages discussed below.

First of all, Player/Stagesoftware bundle has highly flexible and extendable
architecture. The core of this bundlePigyer, the cross-platform robot device interface
and server, also called robotics infrastructuras linstalled on operating system of a
robot and it publishes robot devices and faciliteshe network. The control system
(client) communicates witllayer (server) using TCP or UDP based protocol, while
server acts like a proxy between control program eeal devices — it provides data
from sensors and forwards commands to actuatorsaddition Player provides
pluggable system of drivers which are used to a&coaisot devices and for controlling
specific hardware. Such architecture detaches tmérad code from the underlying
hardware.

Stageis a simulation package for a population of mobidots, sensors and
objects in a two-dimensional bitmapped environm@&itageis designed to support
research into multi-agent autonomous systems, soprdvides fairly simple,
computationally cheap models of lots of deviceheathan attempting to emulate any
device with great fidelity.Stageuses pre-compiled plug-in modules for controlling
device models during simulation which ensures Ipghformance and stability. Also
Stage simulation package provide advanced tools for uike environment
visualization, sensors’ data rendering, time cdranal others.

In addition Stage provides special driver folPlayer server which allows
combination of these two systemStage simulated devices are added Rbayer
configuration and become accessible via regulavaorit interface just like any other
device. This feature allows easy prototyping by buonmg real and simulated devices
and ensuring independence of control system froderlying hardware. Architecture of

Player/Stagesoftware bundle is schematically shown on figufe 6
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Another attractive feature of th&layer/Stage software bundle is simple
configuration based on model primitives. Simulatedrld is built from primitives
derived from simple model concept. Typical modelénaattributes defining its
appearance, such as size, position, color, andvimehh attributes such as sensor
detection indicators. More complex models like ses®r actuators are inherited from
the basic model and add specific attributes. T¢teoli available models includes mobile
base of the robot, range and object perceptionosgngripper actuators and other.
Taking into account simplified physics model (2.5pace) implemented iBtage the
definition of the simulated world is easy and gjhaiforward activity.

Player server provides direct access to simulated or reladt devices. Such
approach allows low-level control over the systemd produces minimal computational
overhead. The author sees advantages in such \@lfeatures because they grant
relative freedom on design of control system.

Another important advantage Bfayer/Stagesoftware bundle is derived from its
architecture. The control system is executed oroteraystem and as a result it can be
implemented using any development tool. There Ig meguirement for basic network
communication and realization &flayer protocol. Examples considered within the
thesis are implemented usidgvaprogramming language and protocol library based on

socket concepts.

Practical example

The author has testedlayer/Stagesoftware bundle (Komasilovs, Stalidzans,
2010) and found it suitable for model-based evalnabdf a specification of a multi-

robot system. Setup of the simulation model is madéwo steps. First of all the
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simulated environment is created. This implies igumtion of simulated world within
Stage its objects and robots. Next active objects @& #imulated environment are
published througPlayer.

Initially the author has planned to create the &wea model for practical
example described in 3.1. For better simulationfigamation managemenStage
supports several concepts usually used in programmanguages. FirsGtageallows
prototyping and inheritance, which allows user &firte own types of models and to
instantiate them on demand. This feature ensurasmal code overlapping within the
configuration and makes the configuration more absel and manageable. Secondly,
Stage supports file inclusions, which allows even betmyde management and
modularity. Several types of models or their insenare defined in separate files
which are later referenced in main configuratide éin demand.

Taking aforementioned considerations, the authtinelé several types of models
for the simulation. First, environmental model type&ere defined, including trees,
bushes, flowerbeds and park boundaries. These ma@del stationary and they are
considered as obstacles for any active model. posipe, dumpsters were defined as
zones providing no obstacles, but configured inay wo provide information about
themselves for the active models (robots).

Special attention was given to grass modeling. ¥eual feedback dummy
models were created for grass areas. But in ocdealtulate performance of the robots
additional computational model is required which wdo store information about
processes areas, where grass is already mowegheFAormance evaluation of robots
the author made an assumption that any spot dfatime should be mowed only once,
and any future processing on the same spot isaemesl as idle time.

The author found that creation of such in-memorydehas not handy. The
approach used within the thesis is based on siedilatodel instead of computational
model. General idea is to define each blade ofsgess separate model within the
simulation. Due to computational limitations of neod hardware this is possible only
up to some assumed fidelity. The author foundetighigable density of grass models is
about 5 blades of grass per area of the activet.robo

Setting up grass model instances within the condigon of simulation could be
done manually. Taking into account number of suabdeis the author looked for
automated approach, however. Within first trial sgranodel instances were placed

according to mathematical model of the lawn. Bet tbsult of simulation was not very
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impressive because grass pieces were placed iyaleaognizable pattern. Because of
that the author developed special utility, whicmemted random population of grass
models according to given lawn and density pararsefen implicit benefit from such
approach is that it models uneven distribution i@sg mass through the lawn, which
corresponds to real world situation.

Grass instances were defined as non-obstacle maalklsiing robots to pass
through them. In addition every instance was sepplvith unique id for mowing
process visualization and future performance tragkiFigure 6.2 shows complex
simulated model of the garden (individual grass ef®dre not visible on particular

figure).

Figure 6.2 Simulated garden model for grass mowing task

The first modeling trials revealed several disadages of complex simulated
environment. First of all, the scale of the simathtnodel of the garden influences the
performance of the simulation package. Secondigel@pen environment decrease the
chance for robots to interact with each other. Aindlly, debugging of control system
within complex environment is not handy.

As a result the author decided to create simpliBadulated model for grass
mowing task. The basic setup was taken from hangestask usual for most of farmers.

Plain lawn was defined and several large buildiwgse created as the only obstacles.
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Dumpster was placed at the edge of the lawn. Ndiaddl requirements were defined
(e.g. walkways or boundaries). Figure 6.3 showspbifed simulated model of

environment for grass trimming task.

EEEEEEEE8

Figure 6.3.Simplified simulated environment for grass mowingask

For both simulated environments described befoeesime robot models were
used. First of all common mobile base was definglich included differential
locomotion, distance measurement sensors for Slamge obstacle avoidance and
camera for long range navigation and perceptionm@anication and processing
facilities are considered as included in the mobéee or provided via external services.

Next the author defined reusable facilities reqiii@ grass mowing task. The list
includes mowing device, grass packing device, statllecting device and transporting
container. These devices were mounted on mobile asorder to get model of
particular robot type.

Taking into account simplification consideratiohe tiuthor defined three types of
robots: the mowing robot which, in addition, paths grass into the stacks and unloads
them on the ground; the transporting robot whichects the stacks of the grass and
transports them to the dumpster; and the robot owedbfrom previous two, which

mows the grass, collects it to own container aridads it on demand.
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Special attention is required for grass mowing statk loading device models.
As there is very simplified physics model impleneshtwithin Stage package these
devices are not allowed to directly affect otherdels. Because of that the devices are
equipped with short range sensor which identififeeiomodels. As a result obtained
information is used in control system for properwirg task simulation. More details
about its implementation are provided in 6.2.

As Stagepackage does not allow dynamic model creatioruitime there were
implemented several technical work-around solutiforsachieving desired behavior
within simulation. For example, grass stacks affindd in advance and are placed to
hidden place. After that they are moved to desp@sition on demand.

Finally, when configuration of simulated world isree (see annex 3), the network
interface of thePlayer package is configured. Its configuration is stnaifprward and
does not require special solutions (see annex iigt &f all the simulation itself is
published to the network, and then all active medebbots) are listed. According to
best practices each published entity is assignedparate network port.

When Stage and Player packages are both configured the setup becomes
accessible via network and robots could be comtlolising any custom control
software. For testing and debugging purpd3ksyer package provides special viewer

utility for rendering values perceived by sensard #or manual control of robots.

6.2. SiMBot-Ctr control framework for simulated robots

The previous chapter described the setup of simdlanvironment used within
the thesis. This chapter describes control pectdiarof the simulated robots. As it was
described before, the simulated models are acdessiough the networkPlayer
package uses a special protocol for communicatidim tve control system. The author
usedJavabased implementation of the protocol (Simon, R@281,3), which is slightly
different from the originaC++ implementation in terms of threading.

In general the protocol is based on asynchronoussaging betweerrlayer
server and its client. First, client connects toveeand bounds to particular simulated
entity (usually robot). Then client subscribeshe particular devices of the simulated
entity. This includes actuators and sensors, whirehpresent on the simulated entity.
The client regularly sends commands to deviceseads perception data from them.
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Due to asynchronous approach several considerasibosld be kept in mind.
First of all, when client sends a command to theiae it does not guarantees
immediate action on the robot. Besides of netwaitlericy, Player server receives a
command and places it into the command stack fdicp&ar device. Therefore it is
possible that the device is busy with other adésitwhen particular command is
received.

Secondly, perception data from sensors is not aveagilable. Different types of
sensors require additional time for collecting gmablishing their readingsPlayer
protocol specifies that a client has to requesi ffaim particular device, and when it is
ready Player sends an answer for the request. Taking into axtcthe dynamic
environment usual for robotic applications therdisoftware should not wait until data
is ready but has to proceed with other taskSalabased implementation of tirdayer
protocol a special background thread is used faoticoous data requesting from the
server, while user control code has to check d=diness in order to properly access it.

The same workflow is used also for accessing @abts with the only difference
that usually real robots have different IP address®l the same port, while simulated
devices are usually located on the same host.

Taking into account previous considerations it dobé concluded that control
system use®layer protocol provided facilities for controlling simaied robots and
other devices, which imply exchange with sensoradegadings and low level
commands. This provides great freedom for developdne control system. For more
intellectual control such low-level access is netywhandy, however. Because of that
various types of architectures are implementedrdernto keep control system well-
structured and easily maintainable (see 1.1).

Keeping in mind the simplification of the lawn mawi task the author assumes
reflexive behavior of the robots without deep operal planning. The subsumption
architecture was selected as suitable architeétursuch robots. It is relatively simple
to implement and, at the same, time it providespiable level of control. Also the
control systems based on subsumption approachaakete extend and add new levels
of intellectual control above reflexes critical furvival.

In order to support the development of control elysthe author proposes special
framework SiMbot-Ctr, which stands foSimulatedM ulti-Robot Contr ol System and
usesJava implementation of thePlayer protocol. In general the framework is an

abstract tool for creating control systems basedudsumption architecture. It uses a
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number of concepts for creating internal structafecontrol system (Komasilovs,
2013).

One of the basic concepts is node. It defines apatational entity of the control
system. Another important concept is signal, whightransmitted between various
nodes. The signal contains of useful informatiod aontrol indicator, which affects
further processing of the signal and is used fgnali prioritization. If a node wants to
get control over the robot it sends signal withtooinndicator set to true. The final state
of the signal depends on the topology of the congmaph: either the signal is
transmitted to output of the system or it is cote@ror decayed within the internal
structure of the control system.

Basic node type used in control graph is behaviodefines unified action
scenario which is performed by the robot. Accordimgubsumption architecture there
are multiple behaviors within a robot running irrgdkel and propagate signals over the
control graph. Depending on the topology of thepbra behavior might obtain
exclusive control over particular device of theabfor a given time frame.

A special type of node is the input node, whicingfars actual readings of the
sensor data to subscribing nodes. Another spggaldf node is the output node, which
receives a signal from internal nodes of the comggstem and transmits it to the
external subscribers. These types of nodes forenfatte for the control system, which
is used to interact with underlying levels of tlystem or directly with hardware.

There are two special internal nodes implementethinvithe framework:
subsumption and inhibition nodes. Both of them hiawe input signals and one output
signal. The behavior of these nodes depends omatantlicator of the input signals.
Subsumption node outputs second input signal itcastrol indicator is set to true,
otherwise first input signal is sent to output.ibition node outputs the first input signal
only if the second input signal has false contighal. Otherwise, dummy signal is
transmitted with false control flag, which is ingegted as “no signal’.

The framework allows quick and easy setup of arcbgraph using generic and
abstract classes. Also it provides parameterizeplementations of most common
behaviors of robots like cruising, wandering, oblgtavoidance, homing and others. A
control system is constructed from ready to useckslp thereby supporting quick

prototyping. Figure 6.4 demonstrates conceptualehofithe framework.
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Figure 6.4 Conceptual design oSiIMBot-Ctr framework

Another aspect of the control system is its executiPrevious paragraphs
describe construction of the control graph, but i®texecution. In the theory such
control systems has to be implemented using analatpvices, which would allow
parallel processing and best response time. A ajpsaiution for processing is required
taking into account that control system is execwedliscrete digital computers. The
straight-forward solution is to execute each nofdthe control graph in its own thread
and to try to synchronize their outputs in someblesavay. This approach is usually
applicable for multi-agent systems with a heavy potational workload. The control
graph consists of many simple and computationdiigap nodes which would waste
memory if executed in separate thread. Also regpdnge of multi-threaded approach
is longer as it needs a sort of synchronizatiorttieroutput.

The author has used a control graph processingoagiprinspired by Domain
Name Service (DNS) behavior used in networking.eXacution part of the framework
Is designed in such way that the outputs are regdeBrectly from the system without
prior processing. The internal nodes automatiqalbpagate processing requests if their
predecessor nodes are still not processed. Thioagp benefits in such way, that the
output of the control system is obtained by sirggl#, and at the same time only nodes,
which are required for obtaining the output arecpssed, leaving unnecessary lower

importance nodes unprocessed. Taking into accotatelasss nature of most of
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behaviors such processing approach is well suitfablexamples considered within the

thesis.

Practical example

The author use&iMBot-Ctr framework to build control systems for simulated
robots for grass mowing task. As it was mentionaolva, low-level access to simulated
devices is obtained throudhayer protocol facilities. Also at the lower level arfimte
loop is executed which repeatedly requests readimym sensor data and sends
command to the actuators. On top of this skeletorirol system is build. Its inputs are
regularly populated with latest sensor readingsartdut commands are requested.

The control system created for the practical exarhpls multiple input nodes (see
figure 6.5). Distance measurement input used farallonavigation and obstacle
avoidance. A special short range object detectemsar is used for modeling mowing
machine and stack loading facility. A camera isdufee visual orientation and detection
of object of interest. A load sensor is used te@drine when unloading process should
start.

The control system consists of several internabbigns. The lowest priority has
wandering behavior which is activated only whenatleer behavior requests control.
Wandering behavior sets commands for locomotionedriof the robot to slightly
change mowing direction while maintaining constantise speed. Next priority has
homing behavior which tries to direct robot towaotigect of the interest (grass to mow
or stack of grass to collect). The highest priofigs obstacle avoidance behavior
mainly because it is critical for survival. It tsi¢o direct robot away from the obstacle.
However triggering distance is suspended for obstawoidance behavior when
homing behavior is active.

Among locomotion control behaviors there is numtfeother behaviors with act
in more independent way. One of such behaviorgassgmowing or pack collecting
behavior. It is triggered when object of interesperceived by close range sensor and it
sends a notification for simulation engine to moahelwing of particular grass object.
Another independent behavior is involved in a kaidghort term planning. It receives
notifications from previous behavior and counts thember of processed objects (in
fact it models loading process). When particulanant of objects is reached it sends a

command to unload the pack or to change stratedyrgrio go to dumpster. Although,
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these behaviors are highly related to the simula®dronment, its peculiarities and
limitations, the overall performance of the systamresponds to the desired one.

Show
sim.object

»

Hide
sim.object

Figure 6.5Design of control system for simulated grass mowgnrobots

Another aspect of implemented control system, whghvorth to mention, is
custom solution for modeling environmental changesimulated world. As it was
described aboveStagepackage has poor facilities for simulating physjmacesses.
The author has used special concepts for explastrol over the simulated objects.
This mainly includes grass trimming, stack unlogdamd collecting activities.

During the experiments the simulation package waswed on dedicated host
while control system for all robots was built assiagle application with multiple
control threads for each robot. Taking into accoafiorementioned consideration it is
easy to implement inter-thread signaling and datha&nge. For the control of the
simulated world a special control system was imgeleted and executed in separate
thread apart from regular robot control thread. Tolgot control systems inform the
simulation control system about their activitiegshw the simulated environment. For
example, the grass mowing robot eventually sentifications about the mowed grass
objects. For performance considerations, the siamacontrol system collects
notifications into a queue, which is repeatedlynigeprocessed. This includes hiding

and showing grass or stuck objects depending oadtens of the robots.
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6.3. Simulation results and proposals

This chapter provides the analysis of the grassingpvask simulation results and
simulation based evaluation step of the optimizapioocedure in general. In addition a
list of proposals for future development is defirzed discussed.

In general, the simulated model based evaluatioth@fspecification should be
considered in the context of the expected bensadiinfsuch evaluation. Taking into
account that development of the model itself isapensive and complex process, the
rationality of the requested fidelity should be lgpad. There are might be cases when
the development of the precise simulated model igremexpensive than the
implementation of the system itself.

Also there is a direction in robotics research dom@med to analysis and
development of the precise simulated models fotimaibot systems. Many researchers
find this task highly challenging and non-trivialrianni, Marco Dorigo, 2006;
Vaughan, 2008; Dawson et al., 2010). This topimoissidered as out of the scope of the
current thesis.

The very first experiments of the simulation basedluation revealed the need
for the highly intelligent control system for thetie agents. The reactive architecture
of the robot control system described in previohapters demonstrated acceptable
performance. However, a need for the additionalesyswvide intelligent planning was
clearly identified. During experiments robots actad their “own”, without explicit
cooperation. This resulted in a poor overall perfance of the whole robotic system.

From the other side development of the intellectuwaltrol system for the multi-
robot system is highly challenging task and mighttie subject of another thesis (e.g.
(Parker, 1994b)). Because of that the intellectwaltrol system development aspect is

considered as out of the scope of the currentghesi

Practical example

For illustrative purposes the author has implengwoi@y one solution candidate
C selected during the previous step of the proeedidditional simplifications were
assumed. Thereby, different types of transportatapots were simulated as a single
type of agent capable for unloading its own comairProcessing facilities were
eliminated from the simulation as they are modealedirtual devices.

The author has used two different strategies fer dontrol of the robots (see

figure 6.6). The first strategy grant relative fitleen for the robots and they are allowed
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to select their actions independently. As a rethdt robots near chaotically tried to
move around the lawn in order to find the objecintérest (e.g. the grass to mow). The
second approach implies semi-autonomous contradhefrobots used to plan their
actions in a more rational way. As it was statefbiee the additional solution is

required for the intelligent operational planning arder to make the system fully

autonomous.
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Due to lack of the operational planning within tentrol system the author used
the time required for simulated agents to comptée mowing task as a primary
indicator for costs estimation. The author repeage@cution of the simulation
experiment for 10 times and recorded simulatioretimmen the mission was completed.

For the first experiment the operating time of siraulated robotic system varied
from 348 seconds up to 492 seconds, 410.7 secoralgerage. Taking into account the
operating costs of each agent of the system theasid costs are equal to 20 946
monetary units.

For the semi-automatic control approach the aullawe measured the average
performance of the agents and used it for the &onalyoperation time estimation.
According to results the system completes the wmmssvithin 360 seconds, which
equals to 18 360 monetary units.

During the step 7 of the specification optimizatpmocedure the estimation of the
total cost of ownership obtained from the step @hefprocedure is compared with the
value of the initial estimation (step 5). Takingaraccount the simplifications assumed
by the author for the illustrative example scalsagfficients should be applied. This
includes time unit conversions, the scale of thérenment, acceleration coefficients

used within simulated environment and others.
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For illustrative example the author has definedtr&s smaller lawn area, 5 time
faster robots and double simulated time accelaratibaking into account these
coefficients the estimated costs of the robotidesysfor the complex mission equal to
586 488 monetary units for randomly wandering relatd 514 080 monetary units for
semi-automatically controlled system.

The relative difference between the initial and wdation based estimations is
used to draw a conclusion on the results of themopation. For the illustrative example
of the specification the initial estimation of thetal costs of ownership was equal to
455 026 monetary units. The estimations obtaineohguhe simulation based approach
are 29 % and 13 % larger. The author assumeshéeatitference between estimations
is within the acceptable threshold and additionetation of the procedure is not
required.

In general, the author concludes that custom cbaysiem based o8iMBot-Ctr
framework allows precise calculation of the utitina time of the each particular
component within the system. The obtained statisice converted to expenses
according to the operational parameters of thenddfcomponents.

The author has supervised development of mastsistbé Janis Strods. The aim
of his work is to develop a hardware prototype (@gpere 6.7) of the autonomous robot
for grass mowing task, which includes also realuwrabf advanced control system. The
analysis and adaptation of task planning algorithenperformed within the master
thesis.
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Figure 6.7 Prototype of hardware autonomous grass mowing rokio
Author. Janis Strods

The author sees possibility to used developed hanehprototype for validating
and improving the results obtained within the coitrthesis. Measurements obtained
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from the real hardware could be compared to theesproduced via the specification
optimization procedure. However particular analysisut of scope of the thesis.

6.4. Summary of the section

The description and the concepts of the model basalliation step are provided
within the section. The author defines general |acties for application of
simulations for the evaluation of the multi-robotstem specification. The author
selectsPlayer/Stagesoftware bundle for implementing the evaluatiapst

Custom control framewor&iMBot-Ctrfor simulated agents was developed by the
author. The framework follows reactive control magan and is designed as an abstract
tool for the implementation of user control systeifise signal propagation technique
for processing the control system is implementethiwithe framework. According to
the technique the processing requests are aut@ihatropagated through the control
graphs.

The demonstrative grass mowing task was implementéain the simulated
environment. The control system for the task waplémented usingSiMBot-Ctr
framework. Various physical processes are modeseagudirect access to simulation
engine. In addition uneven distribution of grasssnan the lawn was modeled.

Practical experiments reveal the need for an igest control system with
operational planning capabilities for the succdssixecution of the model based
evaluation step. Development of such control sysiemut of scope of the thesis,

however.
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CONCLUSIONS

Major results of the thesis

A procedure for optimization of a specification leéterogeneous multi-robot
system within the full solution domain is develop@dhe objectives of the thesis are
fulfilled.

1. There is performed an analysis of specificationettiggment methods applied for
heterogeneous multi-robot systems.

During the analysis actual research directionhenfteld of multi-robot systems
were considered. The author revealed that mostanfenm investigations are aimed to
development and fine tuning of working solution particular task. However there are
almost no researches focused on formal and universthod development for multi-
robot systems.

The author found that high level design of multh@b systems is not proved by
any examination but instead is based on the fesliavailable during the research.
Thereby, the author raised specification develognpeoblem as unsolved aspect of
multi-robot system.

2. Optimization task and solution concept of spediftca of heterogeneous multi-
robot system is defined.

The definition includes criterion, constraints gratameters for the optimization.
The author has selected the total costs of owrneraki the integral optimization
criterion for practical experiments, taking intocaant application peculiarities of
robotic systems.

The concept of solution for aforementioned optima@atask was defined using
three major terms: solution, agent, and componEme. solution is defined as a set of
agents. The agent is the unit of the system, eithebile robot or stationary device.
Agents are composed from the components, the sidlei concepts of the system
which define particular functionality but not iteplementation.
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3. The procedure for finding optimal specification lnéterogeneous multi-robot
system in full solution domain is developed.

The procedure has iterative nature and consistghit consecutive steps. First
the business requirements are defined, which & diecomposed into the concepts of
the solution. Next, the solution domain is analyaed various evaluation methods are
applied to solution candidates. Finally, the optiation results are analyzed and, if it is
required, the definition of the mission is refinstarting another iteration of the

procedure.

4. Mission definition technique for heterogeneous nralot systems and the
approach for decomposition of the mission are dgped.
According to the proposed concept of the speciboabptimization procedure the
mission for multi-robot system is defined using lise of components, required for the
accomplishing the mission. Classification princgpler components, their structural and

dynamic properties are defined.

5. The size of feasible solution domain of the smatibn optimization task is
analyzed.

Special methods are developed to find the numbeunifue agents and the
number of their possible combinations. The cust@oMBot-Gen software was
developed to perform analysis of agent combinaticarsd eliminate invalid
combinations. Near double exponential growth of bhenof solutions as a function of

the number of defined component is found.

6. Heuristic search algorithm for initial evaluatiorf gpecifications of multi-robot
system is implemented and experimentally tested.

Modular softwareGAMBot-Evafor genetic algorithm based heuristic search is
developed. The software is used as a universal fayothe initial evaluation of the
solution candidates. Implementation of the genafgorithm includes development of
the genetic representation of the solution domaavelopment of the fithess function
used to estimate the total costs of ownership. &sfal practical experiments are

performed to test various aspects of the initialleation of solution candidates.
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7. Possibility to use simulation techniques for finelaation of specification of
multi-robot system is analyzed.
Practical experiments with the develop8dviBot-Ctr framework confirm the
possibility for detailed evaluation by simulatiechniques. It is important to assess the
necessary level of details of the model becausel¢velopment of the model and the

simulation experiments are complicated and timesgomng.

Conclusions and development prospects

Formal analysis and prediction of utilization ofrieais functions of the multi-
robot system are not being investigated within thalti-robot research domain.
Properly designed multi-robot system requires femeestments from a customer and
at the same time it is capable to provide perfocaaand fault tolerance required for
completing the mission defined for the system.

The procedure is proposed for the optimizatiorhef$pecification of multi-robot
system. It defines a workflow for resolving theioptation task and includes business
requirement specification, mission decompositioto inomponents, solution domain
analysis, solution candidate evaluation using Iséiaralgorithms and simulated models.

Analytical estimation of the number of feasible ¢onations of the agents reveal
near double exponential growth of number of sohdias a function of the number of

defined component for the specification optimizatiask.

There are improvements for proposed specificatjgtimozation procedure which
are recommended for implementation but at the samesare out of scope of the thesis.
The author recognizes following development protpec

v’ to improve the model of components and their priig®in order to allow more
flexible definition of their investment and opergtiexpenses;

v’ to implement the estimation model for the totaltsasf ownership using modern
estimation and planning methods defined in thel fafleconomics;

v’ to increase parameterization degree of the developémization software thus
expanding application possibility;

v to developed universal concept for defining tasksthe mission for robotic
system thereby making implementation of the optatian procedure more

versatile;
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v’ to introduce an additional fast simulation steptlie optimization procedure
alongside with final evaluation step;

v  to extend the framework for the control of the @iated multi-robot system
allowing operational planning facilities;

v’ to make the optimization process in general anddfsvare implementation more
interactive and continuous allowing greater contngdr optimization peculiarities
and the final result;

v’ to analyze the application of proposed specificatiptimization procedure in the
other areas to spread the approach and, vise-tergat knowledge and methods

from external areas.
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Annex 1— GAMBot-Eva software configuration XML file

<?xm version="1.0" encodi ng="UTF-8" standal one="yes" ?>
<proj ect >
<conponent s>
<conponent >
<code>nobi | e- base</ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>wheel ed car-1like</fam|ly>
<i nvest ment Cost s>60. 0</ i nvest nent Cost s>
<name>Mobi | e base</ nanme>
<oper at i ngPower >4. 0</ oper at i ngPower >
<requi r ed>
<conment >Mobi | e base requires WFi </ conment >
<r ef Conponent >net wor k- wi fi </ r ef Conponent >
</ required>
</ conponent >
<conponent >
<code>net wor k- wi fi </ code>
<conpl exi ty>1. 1</ conpl exi ty>
<fam | y>W-Fl </fam | y>
<i nvest ment Cost s>30. 0</ i nvest nent Cost s>
<name>W - Fi net wor ki ng</ nane>
<oper at i ngPower >2. 0</ oper at i ngPower >
</ conponent >
<conponent >
<code>now ng- machi ne</ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>1- DOF mani pul ator</fani|y>
<i nvest ment Cost s>40. 0</ i nvest nent Cost s>
<name>Mowi ng machi ne</ nane>
<oper at i ngPower >5. 0</ oper at i ngPower >
<requi r ed>
<conmment >Mowi ng machine i s usel ess on stationary agent </ conment >
<r ef Conponent >nobi | e- base</ r ef Conponent >
</ required>
</ conponent >
<conponent >
<code>| oader </ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>End effector</fam|y>
<i nvest ment Cost s>40. 0</ i nvest nent Cost s>
<nane>Loader </ nane>
<oper at i ngPower >4. 0</ oper at i ngPower >
<requi r ed>
<comment >Loader shoul d be nobil e</ conment >
<r ef Conponent >nobi | e- base</ r ef Conponent >
</ required>
<requi r ed>
<comment >Loader shoul d know t he wei ght of cargo</comment >
<r ef Conponent >l oad</ r ef Conponent >
</required>
</ conponent >
<conponent >
<code>dunper </ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>1- DOF mani pul ator</fanily>
<i nvest ment Cost s>20. 0</ i nvest nent Cost s>
<nane>Dunper </ nane>
<oper at i ngPower >3. 0</ oper at i ngPower >
</ conponent >
<conponent >
<code>| aser </ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>Proxi mty</fam|y>
<i nvest ment Cost s>30. 0</ i nvest nent Cost s>
<name>Laser </ nanme>
<oper at i ngPower >2. 0</ oper at i ngPower >
<requi red>
<comment >Laser is useless on stationary devi ce</ coment >
<r ef Conponent >nobi | e- base</ r ef Conponent >
</required>
</ conponent >
<conponent >
<code>gps</ code>
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<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>Position</fam|y>
<i nvest ment Cost s>25. 0</ i nvest nent Cost s>
<name>GPS</ nane>
<oper at i ngPower >1. 5</ oper at i ngPower >
<requi red>
<comment >GPS i s usel ess on stationary devi ce</ conment >
<r ef Conponent >nobi | e- base</ r ef Conponent >
</ required>
</ conponent >
<conponent >
<code>| oad</ code>
<conpl exi ty>1. 0</ conpl exi ty>
<fam | y>Sensi ng</fam | y>
<i nvest ment Cost s>20. 0</ i nvest nent Cost s>
<nane>Load</ nanme>
<oper at i ngPower >0. 5</ oper at i ngPower >
</ conponent >
<conponent >
<code>navi gati on</ code>
<conpl exi ty>1. 3</ conpl exi ty>
<fam | y>Conput ati on</fam | y>
<i nvest ment Cost s>50. 0</ i nvest nent Cost s>
<nane>Navi gat i on</ nane>
<oper at i ngPower >1. 0</ oper at i ngPower >
<requi r ed>
<conmment >Networking is required for controlling navigati on</conment >
<r ef Conponent >net wor k- wi fi </ r ef Conponent >
</required>
</ conponent >
<conponent >
<code>t ask-al | ocat i on</ code>
<conpl exi ty>1. 2</ conpl exi ty>
<fam | y>Conput ati on</fam | y>
<i nvest ment Cost s>50. 0</ i nvest nent Cost s>
<nane>Task al | ocati on</ name>
<oper at i ngPower >1. 0</ oper at i ngPower >
<requi r ed>
<comment >Tasks shoul d be sent via net</coment>
<r ef Conponent >net wor k- wi fi </ r ef Conponent >
</required>
</ conponent >
</ conponent s>
<confi g>
<agent | nst ancelLi m t >10</ agent | nst anceLi m t >
<crossover Rat e>0. 35</ cr ossover Rat e>
<doubl et t eChr onosomesAl | owed>f al se</ doubl ett eChr onpsonesAl | owed>
<gener ati onsLi m t >15000</ generati onsLi m t>
<gener ati onsSt ep>20</ gener ati onsSt ep>
<keepPopul at i onSi zeConst ant >t r ue</ keepPopul at i onSi zeConst ant >
<m ni munPopSi zePer cent >0</ m ni munPopSi zePer cent >
<nut at i onRat e>15</ nut at i onRat e>
<near | nfinity>1. 0E12</ near|nfinity>
<near Zer 0>1. OE- 12</ near Zer 0>
<popul ati onSi ze>20</ popul ati onSi ze>
<sel ect FronPr evGen>0. 95</ sel ect Fr onPr evGen>
<sel ect or Ori gi nal Rat e>0. 9</ sel ect or Ori gi nal Rat e>
</ confi g>
<cost Model >
<assenbl y>
<b0>10. 0</ b0O>
<b1>5. 0</ b1>
<b2>0. 02</ b2>
<k>3. 0</ k>
</ assenbl y>
<desi gn>
<b0>40. 0</ b0>
<b1>10. 0</ b1>
<b2>0. 5</ b2>
<k>2. 0</ k>
</ desi gn>
<ener gyLoss>
<b0>0. 0</ b0O>
<b1>1. 0</ b1>
<b2>0. 01</ b2>
<k>2. 0</ k>
</ ener gyLoss>
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<sysDesi gn>
<b0>280. 0</ b0>
<b1>20. 0</ b1>
<b2>2. 0</ b2>
<k>2. 0</ k>
</ sysDesi gn>
<sysMai nt >
<b0>8. 0</ b0>
<b1>2. 0</ bl>
<b2>0. 1</ b2>
<k>2. 0</ k>
</ sysMai nt >
<syst emRepl Rat e>0. 005</ syst enRepl Rat e>
</ cost Model >
<m ssi ons>
<ar eaCover ageM ssi on>
<ar eaSi zeX>120. 0</ ar eaSi zeX>
<ar eaSi zeY>150. 0</ ar eaSi zeY>
<nobi | eBase>nobi | e- base</ nobi | eBase>
<nobi | eBaseSpeed>2. 0</ nobi | eBaseSpeed>
<wor kDensi t y>0. 9</ wor kDensi t y>
<wor kDevi ce>nmowi ng- machi ne</ wor kDevi ce>
<wor kDevi ceW dt h>1. 2</ wor kDevi ceW dt h>
</ ar eaCover ageM ssi on>
<transportationM ssi on>
<ar eaSi zeX>120. 0</ ar eaSi zeX>
<ar eaSi zeY>150. 0</ ar eaSi zeY>
<nobi | eBase>nobi | e- base</ nobi | eBase>
<nmobi | eBaseSpeed>8. 0</ nobi | eBaseSpeed>
<wor kDensi t y>0. 04</ wor kDensi t y>
<l oader >| oader </ | oader >
<t arget O f set X>20. 0</ t ar get Of f set X>
<target O f set Y>10. 0</ t ar get O f set Y>
</transportati onM ssi on>
</ m ssi ons>
<name>G ass trinm ng project</nanme>
</ proj ect >
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Annex 2 — Tests of various parameters of the genetic algohnim

The author used the same mission definition asctonplex experiments of
genetic algorithm (see 5.4.1) and changed genkgforitnm parameters provided to the
processing module using XML configuration file. Thst of changes includes such
positions as mutation, crossover and natural sefecates.

The author focused on impact analysis of threermpaters of genetic algorithm:
mutation and crossover rates, natural selectioestioid. For one of the trials author
have changed these parameters as follows:

v/ mutation rate was increased1t®% of genes in average up frorfy;
v’ crossover rate increased@b% of chromosomes up froB6%;
v natural selection transferred only 55% of individuto next generation down

from 95%.

The changes are made with the aim to increasetiansain the population during
the evolution. However author found that these geamegatively affect the overall
performance of the genetic algorithm and do notipece expected increase in heuristic
search speed. Figure A show two processes witlnatigarameters (red and blue) and

other two identical processes with changed paraségecen and yellow).
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Figure A.Evaluation processes with different parameters ofenetic algorithm
Source GAMBot-Evasoftware

As it is seen from the chart modified parametemsdl¢o stagnation of the

evolution. After about first 100 generations tharmfes become rare and the best found
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solution remains unchanged. This could be explaimgedow selection rate of fittest
chromosomes for the next generation. Accordingh garameters almost half of the
population is initialized randomly on every genemat and another half of population is
produced from previous generation.

Also there are notable clusters of change casesidhrthe evolution. It could be
explained by high impact of random factor on theletion. Eventually new best
solution is found and it is updated right away e thext generations because of
guidance of fitness function. Then again stagnataes place until next eventual
finding of best solution.

In addition the changes in parameters of genegiorthm had negative impact on
processing time. The time required to process B@0dg&nerations for genetic algorithm
with modified parameters was equal to 2 weeks mparison with 2 days for original
parameters on the same hardware. This could beaiaedl by high utilization of
population randomization which minimizes the posisipb to apply caching

mechanisms.
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Annex 3 — Stage simulation software configuration file

resol ution 0.02
i nterval _sim 100
threads 4

wi ndow (
size [ 862 683 ]
scal e 9.495

center [ -5.535 1.801 ]
rotate [ 0.000 0.000 ]

show data 1

show flags 1
show footprints 1
show bl ocks 1

)

# lawmn and wal |l s
define wall _V nodel (
col or "grey30"
size [ 0.250 82.000 2.000 ]

gui_nove 0

)

define wall _H nodel (
col or "grey30"
size [ 80.000 0.250 2.000 ]

gui _move 0
)
wall _V ( pose [ -45.0 0.0 0.0 0.0] )
wall _V ( pose [ 36.0 0.0 0.0 0.0] )
wall_H ( pose [ -5.0 41.00.00.0] )
wall _H ( pose [ -5.0-41.0 0.0 0.0] )

# house

define roof nodel (
#Dar k Red
color rgbha [ 0.65 0.05 0.05 1 ]
gui _move 0

)

define house nodel (
#Li ght Sky Bl ue
color rgha [ 0.53 0.81 0.98 1 ]

gui _rmove 1
obstacle return 1

)
house (
size [ 12.000 15.000 4.000 ]
pose [ 27.500 -34.000 0.000 90.000]
nane "housel"
roof (
size [ 12.000 15.000 1.000 ]
r oof (
size [ 6.000 15.000 1.000 ]
r oof (
size [ 1.000 15.000 1.000 ]
)
)
)
house (

size [ 6.000 18.000 3.000 ]
pose [ -10.000 15.000 0.000 0.000 ]
nane "house2"

roof (
size [ 6.000 18.000 1.000 ]
roof (
size [ 3.000 18.000 1.000 ]
roof (
size [ 1.000 18.000 1.000 ]
)
)
)
)
H

# grass

include "grass. def"
i nclude "grass_sinple.inc"

# straw
H
include "straw. def"

i ncl ude "straw_pool .inc"

H

# dunpster

i ncl ude "dunpster.def"

dunpster (
pose [ -40.000 -35.000 0.000 0.000 ]
)

H
# robots

include "robot.def"

robot _nmower (
name "rob_nower 1"
pose [ -40.000 2.000 0.000 0.000]

)
robot _nmower (
name "rob_nower 2"
pose [ -40.000 4.000 0.000 0.000]
)
robot _nmower (
name "rob_nower 3"
pose [ -40.000 6.000 0.000 0.000]

)
robot _transp(
name "rob_transpl"
pose [ -40.000 8.000 0.000 0.000]

)
robot _transp(
name "rob_transp2"
pose [ -40.000 10.000 0.000 0.000]
)
robot _transp(
nane "rob_transp3"
pose [ -40.000 12.000 0.000 0.000]

)
robot _uni v(
nanme "rob_univ1"
pose [ -40.000 14.000 0.000 0.000]

)
robot _uni v(
nanme "rob_univ2"
pose [ -40.000 16.000 0.000 0.000]

)
robot _uni v(
nanme "rob_univ3"
pose [ -40.000 18.000 0.000 0.000]

)
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Annex 4 — Player software configuration file

driver (
nane "stage"
provides [ "6650:sinulation:0" ]
plugin "stagepl ugin"
worl dfile "nrs_grass_sinple.world"

usegui 1

)

driver (
nane "stage"
provides [ "6661:position2d:0" "6661:ranger:0" "6661: bl obfinder:0" "6661:fiducial:0" ]
nodel "rob_nower 1"

)

driver (
nane "stage"
provides [ "6662:position2d:0" "6662:ranger:0" "6662: bl obfinder: 0" "6662:fiducial:0" ]
nodel " rob_nower 2"

)

driver (
nane "stage"
provides [ "6663:position2d:0" "6663:ranger:0" "6663: bl obfinder:0" "6663:fiducial:0" ]
nodel "rob_nower 3"

)

driver (
nane "stage"
provides [ "6671:position2d:0" "6671:ranger:0" "6671: bl obfinder:0" "6671:fiducial:0" ]
nodel "rob_transpl”

)

driver (
nane "stage"
provides [ "6672:position2d:0" "6672:ranger:0" "6672: bl obfinder:0" "6672:fiducial:0" ]
nodel "rob_transp2"

)

driver (
nane "stage"
provides [ "6673:position2d:0" "6673:ranger:0" "6673: bl obfinder:0" "6673:fiducial:0" ]
nodel "rob_transp3"

)

driver (
nane "stage"
provides [ "6681:position2d:0" "6681:ranger:0" "6681: bl obfinder:0" "6681:fiducial:0" ]

]
)

driver (
nane "stage"
provides [ "6682:position2d:0" "6682:ranger:0" "6682: bl obfinder: 0" "6682:fiducial:0" ]
nodel "rob_univ2"

nodel "rob_univ1"

)

driver (
nane "stage"
provides [ "6683:position2d:0" "6683:ranger:0" "6683: bl obfinder:0" "6683:fiducial:0" ]
nodel "rob_univ3"

)
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