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Abstract
The objective of precision beekeeping is to minimize resource consumption and maximize productivity of bees. 
This is achieved by detecting and predicting beehive states by monitoring apiary and beehive related parameters 
like temperature, weight, humidity, noise, vibrations, air pollution, wind, precipitation, etc. These parameters are 
collected as a raw input data by use of multiple different sensory devices, and are often imperfect and require 
creation of correlation between time data series. Currently, most researches focus on monitoring and processing each 
parameter separately, whereas combination of multiple parameters produces information that is more sophisticated. 
Raw input data sets that complement one another could be pre-processed by applying data fusion methods to achieve 
understanding about global research subject. There are multiple data fusion methods and classification models, 
distinguished by raw input data type or device usage, whereas sensor related data fusion is called sensor fusion. This 
paper analyses existing data fusion methods and process in order to identify data fusion challenges and correlate them 
with precision beekeeping objectives. The research was conducted over a period of 5 months, starting from October, 
2019 and was based on analysis and synthesis of scientific literature. The conclusion was made that requirement 
of data fusion appliance in precision beekeeping is determined by a global research objective, whereas input data 
introduces main challenges of data and sensor fusion, as its attributes correlate with potential result.
Key words: data fusion methodology, sensor fusion, sensory monitoring, bee colony states, hiveopolis.  

Introduction
Precision beekeeping (PB) is an apiary management 

strategy with the focus on monitoring individual bee 
colonies aimed to minimize resource consumption 
and maximize the productivity of bees (Zacepins, 
Stalidzans, & Meitalovs, 2012). Strategy includes 
data collection phase, data processing phase and 
data output phase. Data collection phase corresponds 
to gathering data about various physical variables 
associated with bee colonies (Meikle & Holst, 2015), 
such as temperature, humidity, respiratory gases, 
vibration and sound. Data collection is typically 
performed using sensors that are integrated into bee 
hives and are connected to the main processing system 
(Kviesis et al., 2015). Processing phase of bee colony 
data is typically limited to basic statistical analysis 
(Henry et al., 2019) with the aim to determine such 
bee colony states as queenlessness, broodlessness, 
pre-swarming, swarming and after swarming. Data 
output phase includes methods to provide processed 
data – information, to end user in a form of a graphical 
or tabular representation. 

There are multiple studies (Ferrari et al., 2008; 
Kviesis & Zacepins, 2015; Meikle & Holst, 2015; 
Zacepins et al., 2015) aimed to identify approaches 
to gather data for analysis, and also define the types 
of these data. Some of these studies (Human et al., 
2013) also propose classification of data collection 
phase. The limitation of these studies lies in gathering 
data for particular physical variables like temperature 
or weight with the aim to analyse this variable by 
itself. In modern apiaries data if collected through 
the use of wireless network technologies (Debauche 
et al., 2018; Henry et al., 2019), can lead to data 
imperfections and inconsistency. To alleviate such 

problems, data fusion methods are applied prior to 
data processing. 

There are multiple studies (Castanedo, 2013; 
Khaleghi et al., 2013; Zheng, 2015; Atluri, Karpatne, 
& Kumar, 2018; Beddar-Wiesing & Bieshaar, 2020) 
addressing the classification of data fusion methods. 
However, there is no finalized accepted data fusion 
classification, and researchers are still proposing new 
variations.

In the framework of PB, application of data fusion 
methods can lead to solving global objectives of bee 
colony lifecycle, such as colony overall health status 
and colony collapse disorder. However, appliance 
of data fusion methods in PB is not commonly used 
practice. The aim of this research was to identify PB 
oriented data sets and objectives, which can only be 
achieved by appliance of data fusion methods.

This research was performed in the framework of 
HIVEOPOLIS project that aims to make technologies 
available to honeybees that are naturally inaccessible 
for them (internet, databases, satellite data, robots, 
etc) and to feed information collected by bees through 
these channels back to us researchers and also to 
other hives.

Materials and Methods
The research was conducted over a period of 5 

months, starting from October, 2019, and was based 
on analysis and synthesis of scientific literature, which 
addresses data fusion terminology, methodology and 
application, multi sensor monitoring in beekeeping 
and development of sensory systems to determine 
various physical apiary oriented variables and states. 
The Elsevier’s ScienceDirect website was used as 
the main source for literature acquisition. There are 
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currently (on 13th of March) more than 68000 recent 
(20017–2020) papers on data fusion topic, more than 
43000 papers on multi-sensor data, and more than 450 
papers on beekeeping related topics.    

Results and Discussion
Data fusion

Recent fusion terminology proposal (Beddar-
Wiesing & Bieshaar, 2020) uses data-information-
knowledge-wisdom (DIKW) hierarchy as a base to 
finalize the data fusion oriented terms. In DIKW data 
is divided (Bellinger, Castro, & Mills, 2003; Allen, 
2004; Targowski, 2005) into five categories: data, 
information, knowledge, understanding and wisdom. 
Data is described as representation of objects, 
whereas processed data leads to information, which 
can provide answers to ‘who’, ‘what’, ‘where’ and 
‘when’ questions. The application of these data and 
information generates knowledge, which can provide 
an answer to ‘why’ question. If relations and patterns 
in the information are identified, understanding is 
reached. As a result, following DIKW hierarchy, I can 
assume that the quality of data is proportional to the 
quality of information; therefore, understandability of 
research object is ensured. 

Data fusion as a term is applied to raw data, the first 
step of DIKW hierarchy. The most accepted definition 
of data fusion was provided by Joint Directors of 
Laboratories (JDL) workshop (White, 1991): ‘a 
process dealing with the association, correlation, 
and combination of data and information from single 
and multiple sources to achieve refined position 
and identity estimates, and complete and timely 
assessments of situations and threats as well as their 
significance’. Hall and Llinas (Hall & Llinas, 1997) 
provided sensor system oriented data fusion definition: 
‘data fusion techniques combine data from multiple 
sensors, and related information from associated 
databases, to achieve improved accuracies and more 
specific inferences than could be achieved by the use 
of a single sensor alone’. The employment of terms 
data and information in these definitions as separate 
instances can be explained by applying these terms to 
different data states. The term data fusion is typical 
in scenarios when data are raw – obtained directly 
from sensors, whereas the term information fusion is 
applied to already processed data (Castanedo, 2013). 
These definitions support my previous assumption 
about quality data being determinant for quality of 
information. 

According to Castanedo (Castanedo, 2013), 
data fusion technologies can be classified into 
three categories, which are data associations, state 
estimation and decision fusion. This classification was 
developed based on such criteria as relations between 
input data sources, input and output data types 

and their nature, and the abstraction levels of data, 
which are raw measurements, signals or decisions. 
The relation between data sources is determined by 
whether the information was provided by data input 
sources representing the same or different part of the 
scene and/or object, whereas the abstraction level 
corresponds to representation of the input data. In 
PB data input sources are typically imbedded into 
beehives; therefore, one set of sensors monitors one 
particular beehive, rather than an apiary. The Luo et 
al. (Luo, Yih, & Su, 2002) proposed such abstraction 
levels as signal level, pixel level, characteristics level 
and symbol level. 

Alternatively, Zheng (Zheng, 2015) classifies 
data fusion in three categories, which are feature-
level based, stage based and semantic meaning based. 
Zheng’s stage based data fusion correlates with 
Castaneda’s state estimation. Both of these methods 
process raw data according to the amount of distinct 
data sets in sequence. The amount of distinct data 
sets, or, in perspective of spatial data – layers, leads 
to quality increase of end result data; however, each 
of layers may introduce additional fusion challenges. 
Feature-level based data fusion methods include 
converting or mapping raw input data into feature 
vectors that are used for Deep Neural Network 
(DNN) type data fusion. Liu et al. (Liu et al., 2020) 
proposed DNN data fusion methods for urban big 
data with the focus on fusing multi modular data, and 
Peng et al., (Peng, Deng, & Chen, 2020) used DNN 
in combination with Hellinger and Bures metrics for 
weather data fusion. Both of these studies show that 
raw input data converted into feature vectors highly 
increase the scope of possible processing approaches. 
Both decision fusion and semantic meaning based 
fusion work with knowledge, rather than raw data; 
therefore, in this research these methods are not 
analysed in-depth. Based on DWIK and data fusion 
classification a hypothesis was put forward: data 
fusion challenges are mainly raw data related. 

To understand the importance of raw data the 
data fusion process was further analysed. The most 
basic data fusion process, which is still commonly 
referenced (Solaiman, 1999; Castanedo, 2013; 
Zheng, 2015; Chang & Bai, 2018), was proposed by 
JDL workshop (White, 1991). JDL has divided data 
fusion process into five processing levels, which 
are level 0 – source preprocessing, level 1 – object 
refinement, level 2 – situation assessment, level 3 – 
impact assessment, and level 4 – process refinement. 
Source preprocessing includes fusion at the signal 
and pixel levels. Object refinement – includes 
process as spatial-temporal alignment, association, 
correlation, clustering, state estimation, combining 
of features that were extracted from images. Situation 
assessment addresses evaluation of relations between 
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object parameters, i.e. proximity, communication, 
interference, with the aim to identify activities and 
patterns. Impact assessment evaluates impact of 
identified activities to obtain a general perspective, 
i.e. calculates risks, vulnerabilities and operational 
opportunities. Process refinement uses results from 
level 0 to level 3 to optimize efficiency of resource 
management. Based on JDL fusion process definition, 
the type of raw data is not an obstacle for data fusion, 
as processing module can fix and adjust it in the second 
processing step by various means. This leads to taking 
a previous stated hypothesis as incorrect; however it 
may change depending on data fusion challenges. 

According to Llinas et al. (Llinas et al., 2004) 
definition of fusion process provided by JDL can only 
be used as a framework (Figure 1) to understand the 
functions of data fusion, instead of being taken as a 
detailed processing architecture.  

JDL has many restrictions (Khaleghi et al., 2013) 
as it is tuned for military applications; however, fusion 
process can be improved and adjusted, for example, 
by adding a new level – user refinement (Blasch & 
Plano, 2002), which delineates a human from the 
machine in the process refinement. There can also 
be improvements to existing levels by addressing 
the following aspects (Llinas et al., 2004): (1) issues 
related to quality control, reliability and consistency, 

(2) opportunities and needs for co-processing and (3) 
distributed data fusion. Overall, data fusion method is 
chosen based on volume and properties of available 
raw data. Therefore, the data aspect of data fusion 
process is still determinant to the overall result, and 
challenges regarding raw data collection and pre-
processing were analysed.
Data fusion challenges

In the PB the type of raw data is determined by a 
sensor or third party source; therefore, the data fusion 
challenges were first analysed from the perspective of 
data and its related fusion aspects (Figure 2). 

It is acknowledged (Khaleghi et al., 2013) that 
data provided by sensors are always affected by 
impreciseness and some degree of uncertainty of the 
measurements, thus introducing data imperfection. 
Sensors in PB often become affected by the 
environment (Kumar, Garg, & Zachery, 2006; Henry 
et al., 2019) introducing outliers into raw data sets. 
It is common in the field of statistics to remove 
outliers (Zhang, Meratnia, & Havinga, 2010) prior to 
performing any analysis and processing. 

When using multiple sensors to produce the 
same physical variable, for example – temperature, 
conflicting data may be created, thus requiring in-
depth pre-processing procedures to eliminate such 
occurrences. In the case of multi sensor systems 
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Figure 1. Fusion process according to Joint Directors of Laboratories  
(Blasch & Plano, 2002; Llinas et al., 2004).

Figure 2. Data related fusion aspects according to Khaleghi et al. (Khaleghi et al., 2013).
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(Kviesis et al., 2015; Henry et al., 2019) that gather data 
in order to provide decision support, data produced can 
be multimodal – qualitatively similar (homogenous) 
or different (heterogeneous), such as auditory, visual, 
tactile measurements, textual or a mixture data. The 
heterogeneous data can be divided (Liu et al., 2020) 
into spatial data, temporal data, static data, dynamic 
data and attribute data. These representations can 
also be used in combination with temporal data, i.e. 
spatial-temporal data (Atluri, Karpatne, & Kumar, 
2018), which contain both time dimension and space 
dimension. In PB, spatial-temporal data are used for 
weather forecast. 

In case of wireless sensor networks (Meikle 
& Holst, 2015; Ampatzidis et al., 2016; Kviesis, 
Komasilovs, & Komasilova, 2020) sensor nodes are 
likely to be exposed to the same external noise that 
can bias measurements of these sensors; therefore, 
it is important to establish correct data correlation. 
This is especially important for large industrial grade 
apiaries. In addition, acquisition of data from sensors 
may introduce a problem called data alignment of 
registration, which occurs when data from each 
sensor’s local frame are transformed into a common 
frame prior to fusion process (Khaleghi et al., 2013). 

Another challenging problem is data association, 
which occurs in scenarios of multi-target tracking, 
typically divided into two forms (Sheng et al., 2018): 
measurement-to-track and track-to-track association. 
The former refers to the challenge of identifying the 
source of data, while the latter refers to the problem of 
distinguishing between tracks. 

Either local sensor node or central computer 
processes the data, thus introducing centralised 
and decentralised sensor system architecture. 
Decentralised architecture is preferable in case of 
wireless sensor networks (Murakami et al., 2007; 
Kviesis & Zacepins, 2015; Debauche et al., 2018), 
as it allows each sensor to process data locally, 
i.e., eliminating outliers and other imperfections. 
Appliance of decentralised architecture in PB allows 
each sensor node to be responsible for particular 
physical variable’s observation. As there are typically 
(Ferrari et al., 2008; Chang & Bai, 2018; Debauche 
et al., 2018) multiple modules per beehive, each for 
particular variable, decentralised architecture, where 
each module can process raw data itself, reduces the 
overall load of main system.

Depending on sensor system architecture, raw 
input data can be compressed into lower dimensional 
data, introducing some level of compression loss (Zhu 
et al., 2005). 

Multi sensor data collection also introduces such 
challenge as operational timing. Data from sensors 
may be collected in different timeframes, thus 
requiring for data fusion algorithm to implement 

varying time scales. The main issue with different 
timeframes, especially in real-time applications, is 
the out-of-sequence arrival of data (Besada-Portas 
et al., 2011). Operational timing can also introduce 
another challenge – processing the static and dynamic 
data. The former refers to data that are time-invariant, 
while latter – to data varying with time. In some 
cases the latter may require incorporating history 
of measurements to perform data fusion correctly 
(Brooks et al., 2009) in order to acquire knowledge 
about data freshness, i.e. how quickly data sources 
capture changes and update accordingly (Khaleghi et 
al., 2013).
Data of precision beekeeping

The type of raw data in PB is determined by the 
source that produces these data, whereas there are 
currently multiple variations of data sources in the 
field of PB. 

Primarily the distinction between data levels must 
be defined. There are three distinct levels defined 
(Human et al., 2013; Zacepins & Stalidzans, 2013): 
apiary, colony and individual bee-related levels. 

Apiary level data includes meteorological and video 
observation data. Main meteorological parameters 
are wind and precipitations. Apiary management 
software tend to use (Braga et al., 2020) third party 
weather stations to acquire these parameters. Spatial 
observations allow identifying the type of fields and 
crops (Atluri, Karpatne, & Kumar, 2018; Calatayud-
Vernich at al., 2019) that are usable for bee foraging. 
The sources of apiary level data are broad angle video 
cameras, local apiary weather stations, public weather 
stations and satellite imagery services. 

Colony level data includes temperature, humidity, 
weight, sound, vibration and video data. Temperature, 
weight and humidity are the most popular parameters 
(Stalidzans & Berzonis, 2013; Meikle & Holst, 2015), 
whereas swarming and colony death are the most 
popular (Ferrari et al., 2008; Kridi, De Carvalho, & 
Gomes, 2014) monitor objectives. Researchers use 
these parameters to determine such beehive states as 
broodlessness, intensive brood rearing, swarming, 
pre-swarming and after swarming, overheating, as 
well as colony death. Sound and video data are also 
used to determine air and noise pollution. Researchers 
use sound and vibrations (Bencsik et al., 2015) 
to determine such beehive states as quenlessness, 
broodlesness, swarming (including prior and after 
swarming periods), beehive overpopulation and 
colony death. The sources of colony level data are 
temperature sensors, humidity sensors, weight sensors, 
noise and sound receivers, mono and multispectral 
video cameras.

The individual bee-related monitoring addresses 
such objectives as bee counting, i.e., bees going in/out 
of hive (Souza Cunha et al., 2020), amount of infested 
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bees (Bjerge et al., 2019), and bee activity (Ngo et al., 
2019). The sources of individual bee-related data are 
mainly mono and multispectral video cameras.

Depending on the data level and parameters, 
researchers and apiary management system developers 
define a system architecture that can realise these 
principles (Murakami et al., 2007; Kviesis et al., 
2015; Kridi, de Carvalho, & Gomes, 2016; Zacepins 
et al., 2017a; Zacepins et al., 2017b, Debauche et al., 
2018): (1) use as few sensors as possible to minimize 
diminishing returns, (2) optimize the efficiency of 
sensor workload by using on-off cycles, (3) use web/
cloud based storage, (4) sufficient scalability for future 
upgrades. 
Data fusion approach applications in precision 
beekeeping

Based on conducted research, I can conclude that 
applications of data fusion approach in PB define the 
requirements for data sets with applications targeting 
broad objectives, such as spatial positioning of the 
beehive colony and short-term prediction of weather 
conditions.

Spatial positioning refers to selection of most 
efficient position of individual beehive colonies in the 
framework of available apiary borders. The efficiency 
is determined by the amount of honey produced by 
bees during a particular period. The following data sets, 
respectively, raw data layers for data fusion, must be 
included into processing: the location, size and borders 
of an apiary, the types and sizes of nearby fields and 
available vegetation (including seasonal blooming), 
the status of pesticide or other harmful chemical use 
on these fields, nearby and dividing roads, Earth’s 
terrain and its landforms. The amount of bees leaving 
and entering beehive during a particular period and 
the changes in the weight of beehive during this period 
must be taken into account as well. The objective of 
short-term prediction of weather conditions refers 
to predicting wind and precipitations in the closest 
two hours in order to manage bee lifecycle, i.e. 
automatically closing the beehive gates or changing 
inside temperature. Henessy et al. proved (Hennessy 

et al., 2020) that wind has direct and indirect effects on 
foraging of worker bees (Apis mellifera). The former 
indicates that foraging rate lowers with increase of 
wind speed, while latter introduces hesitation of taking 
off from flowers after nectar gathering. Wind can also 
transfer harmful substances from nearby fields to 
foraging areas (Gamboa et al., 2020). Precipitations 
affect foraging rate and bee lifespan as heavy rain can 
break bee’s wings. He et al. proved (He et al., 2016) 
that bees work harder before heavy precipitations. The 
following data sets must be included into processing: 
air humidity in a particular period, beehive inside/
outside temperature in a particular period, weather 
forecast, wind speed, wind direction. 

Conclusions
Data fusion is not a novel research topic; however, 

there are still ongoing debates about proper data 
fusion terminology, methodology and classification. 
It can be concluded, that data fusion is and will be 
a hot topic between researchers in the coming years 
as it correlates well with developing machine learning 
topic. It can also be concluded, that data fusion 
approach applications in the framework of precision 
beekeeping is a novel idea, and is yet to be researched. 

The choice of data fusion method depends on the 
raw input data sets, as input raw data plays the major 
role in the data fusion process by determining the 
correctness and quality of information. The sensors or 
input data do not determine the need of data fusion for 
beekeeping related data; rather, it is a global objective, 
which requires the use of multiple multimodal input 
data provided by a multi sensor system. Practical 
applications do not introduce objectively serious 
technical data fusion challenges as do data type and 
attributes of input data.
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