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Abstract 
The main objective of this study is to demonstrate the use of artificial neural network (ANN) modeling tool to predict the risk 

of phosphorus (P) loss from the fields to nearest water body. The attention is drawn to ANN as an alternative approach to the P 
index calculation for prediction of the P losses. The specific tasks of this study were to determine risk classes of P loss by linking 
together source and transport factors that accelerate P losses and to evaluate ANN model performance for predicting risk classes 
via nutrient transport. ANN was trained with a Levenberg-Marquardt algorithm, and Scaled Conjugate Gradient algorithm was used 
to estimate the possible risk of P losses from agricultural land. Two small agricultural watersheds in Auce and Bauska were chosen 
to determine field parameters, and expert’s evaluation was used for description of the risk classes’ of P loss. Finally these values 
were used as inputs for the neural network model. The model was trained and validated by assessing its predictive performance 
on a testing set of data excluded from the training set. The research results highlight the capabilities of ANN to predict risk for a 
particular field and suggest that future research on application of other algorithms is required. 
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Introduction 
The problem of phosphorus (P) loss in environmental 

science is well studied (Buczko and Kuchenbuch, 
2007). Widely used approach for control of the P loss is 
designation of Phosphorus Index (P Index). The P Index 
(Sharpley et al., 2003; Heathwaite et al., 2000) is a tool 
that combines indicators of P source and of P transport 
as well as management factors to get qualitative risk 
characteristics of the site. P Index ranks fields according 
to risk of P loss in categories such as low, medium, high, 
and very high risk. General approach of P Index is to 
access the potential risk of P transport to surface waters 
from various fields by weighted parameters that promote 
risk of the P movement. Parameters values usually are 
rated (low = 0, medium = 2, high = 4, very high = 8) and 
rates for each level are summed. The original P Index 
uses a technique, which multiplies the site characteristics 
weighting factor with the phosphorus loss rating value 
to calculate the vulnerability of each site, but a numerous 
of modified techniques have been derived from the 
original version (Buczko and Kuchenbuch, 2007). Full 
understanding of the nutrient transport process is 
still difficult. Development of advanced tools is often 
restricted by large data input requirements and this limits 
the accuracy and reliability of many models. However, 
it is essential for good index to get appropriate index 
parameters ranks or weights and scale range boundaries 
for P index outcome in specific region (Kim et al., 2008). 
Since the estimation of nutrient losses fills an evident part 

of environmental studies, a number of computer-based 
models have been developed to enhance prediction of 
nutrient losses. Examples of computer-based techniques 
for studying of the water-quality-management systems 
include artificial intelligence, expert systems, neural 
networks, genetic algorithms, and other (Huang and 
Xia, 2001). Recently, one of the more popular and widely 
applied computational approaches is the artificial neural 
network approach. In comparison to traditional statistical 
methods, ANN is presented as a powerful data-modelling 
tool that is able to capture and represent complex 
input-output relationships (Govindaraju and Rao, 2000). 
Basically, the advantages of neural networks are ability to 
represent both linear and non linear relationships and to 
learn these relationships directly from data. For example, 
comparing ANNs with traditional multiple regression, 
ANN is found more flexible, hence more suitable and 
accurate for prediction (Talib et al., 2008). A set of inputs 
and output responses, representing a variety of simulation 
scenarios is sampled at random, and a particulate 
technique to allocate this set into training and testing 
subsets, is developed to obtain the best performance 
of network for the smallest error between observed and 
calculated data sets (Kim et al., 2006). Like biological 
neurons, ANN models contain multiple layers of simple 
computing nodes (neurons) that operate as summing 
devices. Weighted links interconnect these nodes. Each 
weight is adjusted when measured data are presented 
to the network during a ‘training’ process. The artificial 
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neuron which is given in Figure 1 has N input denoted as 
uj, for j = 1...N and each line connecting these inputs to 
the neuron is assigned a weight, which are denoted as wj 
respectively and corresponds to the connection between 
neurons. While a single artificial neuron may not be able 
to implement some functions, the problem is solved by 
connecting the outputs of some neurons as input to the 
others, so constituting a neural network (Gümrah et al., 
2000). Successful training can result in an ANN model 

that performs tasks such as predicting an output value, 
classifying an object, approximating a function, and 
others (Kim, Gilley, 2008). Regarding variable prediction 
as one of the artificial neural network technology broad 
categories, it comes useful to test how accurately ANN 
learns to predict the value of an output variable (P loss 
risk class for a field) by giving input variable information 
(evaluation of P source and P transport factors that 
promote P loss from a field).

Figure 1. Artificial neuron and its structure (Gümrah et al., 2000).

variable (P loss risk class for a field) by giving input variable information (evaluation of P source and P transport 
factors that promote P loss from a field). 

Figure 1. Artificial neuron and its structure (Gümrah et al., 2000).

The most widespread ANN design consists of an input layer, hidden layer(s), and an output layer of 
processing units (neurons). These are key components of artificial neural network models. The input layer 
introduces inputs to the network, or in other words, serves as an interface between the input variable data and the 
ANN model. Most of models also contain one, two or more hidden layers that transform inputs by adding them 
and applying linear or non-linear activation function(s) thus performing most of the calculations within the 
network (Nour et al., 2006). The output layer represents the response of the network. The goal of artificial neural 
network learning is to minimize the error between the models predicted value and the actual value of the output 
variable(s). According to Nour et al. (2006), the error minimization takes place by modifying the weights 
between neurons by a learning rule. As training progresses, the mean squared error (MSE) between the target 
output and the network output is calculated, and the weights are updated systematically. Weight adjustments are 
made based on an objective function that reduces MSE. Training proceeds until the prediction error is 
sufficiently small or until a maximum number of iterations have been reached (Nour et al., 2006; Baxter et al., 
2002).

ANN modeling suggests that subject to data should be divided into three sets in the ratio 3:1:1 for 
training, testing, and validating the model, respectively. The training data set is used to adjust the connection 
weights. The validation data set measures network generalization to halt training when generalization stops 
improving, but testing data set measures of network performance during and after training, but does not affect 
the training. Advantages of artificial neural network modeling include handling of nonlinear relationships and 
providing of output variables in response to simultaneous and independent fluctuations of the values of model 
input variables Also data patterns with missing values of input variables can be incorporated into model building 
(Govindaraju and Rao, 2000). Besides, ANN does not require complicated programming, several user-friendly 
ANN software packages exist. Challenges of artificial neural network modeling show that model predictions are 
more accurate if only large and complete training data sets are used and extremes of possible values are present. 
Consequently, ANNs will almost never perfectly predict all values, so a reasonable error must be used for 
training and testing of networks (Govindaraju and Rao, 2000). The key to a good network is the appropriate 
training data; consequently artificial neural network models can be developed only where sufficient historical 
data for each of the process variables exists (Baxter et al., 2002). 

Artificial neural networks (ANNs) have found wide applications in recent years. ANNs capabilities have 
been successfully used and proved through many water resource applications (Govindaraju and Rao, 2000). 
Studies of ANN include chemical composition of surface waters and water quality prediction (Maier, Dandy, 
1996), water quality modeling (Gümrah et al., 2000), prediction of eutrophication (Kuo et al., 2007), estimation 
of soil erosion and nutrient concentrations in runoff (Kim and Gilley, 2008), prediction of nutrient transport in 
runoff (Kim et al., 2006), phosphorus dynamics in small streams (Nour et al., 2006), and others (Talib et al., 
2008). This study aims to test an ANN modeling tool that can predict agriculture field vulnerability to P loss 
risk.

Materials and Methods
Field tests for experimental data of P loss risk were conducted at Auce and Bauska (central part of 

Latvia). The individual risk indices were evaluated for 30 fields in Vecauce farm and 41 fields in Bauska farm. 
The following information was available for index calculation: soil P contents, land use (crop rotation), inputs of 
P in fertilizers and manures, soil type, field slope, and drainage. Data on land use and inputs of P were collected 
from farmers and field observations. Soil types, field slopes and location of drainage were derived from land 
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ANN software packages exist. Challenges of artificial 
neural network modeling show that model predictions 
are more accurate if only large and complete training data 
sets are used and extremes of possible values are present. 
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of the process variables exists (Baxter et al., 2002).

Artificial neural networks (ANNs) have found wide 
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waters and water quality prediction (Maier, Dandy, 1996), 
water quality modeling (Gümrah et al., 2000), prediction 
of eutrophication (Kuo et al., 2007), estimation of soil 
erosion and nutrient concentrations in runoff (Kim and 
Gilley, 2008), prediction of nutrient transport in runoff 
(Kim et al., 2006), phosphorus dynamics in small streams 
(Nour et al., 2006), and others (Talib et al., 2008). This 
study aims to test an ANN modeling tool that can predict 
agriculture field vulnerability to P loss risk.

Materials and Methods 
Field tests for experimental data of P loss risk were 

conducted at Auce and Bauska (central part of Latvia). 
The individual risk indices were evaluated for 30 fields in 
Vecauce farm and 41 fields in Bauska farm. The following 
information was available for index calculation: soil P 
contents, land use (crop rotation), inputs of P in fertilizers 
and manures, soil type, field slope, and drainage. Data 
on land use and inputs of P were collected from farmers 
and field observations. Soil types, field slopes and 

location of drainage were derived from land amelioration 
maps developed by Department of Environment and 
Water Management (Latvia University of Agriculture). 
Knowledge on P input time and methods made the 
greatest uncertainty. Uncertainty in fertilizer application 
rates consequently contributed most to the output 
uncertainty. 

The MathLab software was used to create neural 
network. The architecture of network is organized 
as a set of interconnected layers of artificial neurons 
– input, hidden and output layers (Fig. 2) – trained by 
Levenberg-Marquardt algorithm. Levenberg-Marquardt 
learning algorithm as improved Guass-Newton method 
is mentioned as one of the popular methods to speed up 
the learning process; other characteristic of this method 
is to deal with the small residual problems in learning 
(Chan, 1996). Detailed information about the algorithm 
is covered by R.M. Hristev (1998) and A.A. Suratgar et al. 
(2005). 

amelioration maps developed by Department of Environment and Water Management (Latvia University of 
Agriculture). Knowledge on P input time and methods made the greatest uncertainty. Uncertainty in fertilizer 
application rates consequently contributed most to the output uncertainty.

The MathLab software was used to create neural network. The architecture of network is organized as a 
set of interconnected layers of artificial neurons – input, hidden and output layers (Fig. 2) – trained by 
Levenberg-Marquardt algorithm. Levenberg-Marquardt learning algorithm as improved Guass-Newton method 
is mentioned as one of the popular methods to speed up the learning process; other characteristic of this method 
is to deal with the small residual problems in learning (Chan, 1996). Detailed information about the algorithm is 
covered by R.M. Hristev (1998) and A.A. Suratgar et al. (2005).  

Figure 2. Arhitecture of the neural network used for P loss risk estimation. 

Eight variables were selected as the inputs: results of soil P test, P fertilizer rate and P transport factors – 
erosion, runoff, leaching, drainage, surface run-off inlets and buffers for training of the neural network. All 
transport factors were calculated based on soil properties and evaluated by direct observations of fields. Details 
about P loss identification variables are covered by L. Berzina and A. Zujevs, 2008. P loss risk class was 
provided as an output variable. The input and output process elements (PEs) are fixed by the particular user 
application, but the number of hidden PEs must be specified. Hidden layer includes 27 hidden neurons that gave 
the best results. The weights (w) and biases (b) are iteratively adjusted during training to minimize network 
error. Networks were trained with experimental data that represent the characteristics of the process of risk of P 
loss identification. 71 data point was used in this study. For this dataset, each data points of P loss risks 
parameters were randomly divided into three subsets: a training set (70% of the total), a validation set (15% of 
the total), and a test set (15% of the total). Training data set was used for ANN prediction model development, 
validation set – for ANN performance evaluation, but the test set was used to guide the fitting of ANN.
Mean squared error algorithm was used for performance, and random algorithm was used for data division. The 
ANN modeling approach conducted in this study can be divided into three phases: data pre-processing, model 
building, and model evaluation. 
Basically, the four main steps were taken in this forecasting study:

1) model design: choose a suitable model;  
2) training: estimate the parameters of the model; 
3) validation: test the model on data sets to determine its validity;  
4) interpretation: explain results.

Results and Discussion
ANN was trained in 7 epochs that gave the best overall results for prediction of P loss. Model evaluation 

was based on the correlation coefficient and graphical examination of both measured and predicted values; 
however, residuals analysis and model stability also are suggested and can be used in further analysis of the 
results (Nour et al., 2006). The training process is plotted in Figure. 3. It shows on logarithmic scale the 
precision of response of the network to validation and test data sets explicated by mean square error. The graph 
displays that neural network is able to predict targets from training set with reasonable accuracy already at 
epochs 4 to 5. At epochs 6 to 7, the accuracy of prediction tends to be almost absolutely correct. Meanwhile the 
response to validation and test data sets reached a stable unchanging level of mean square error of 0.75 for 
validation and 1.20 for testing data sets, which is number of times greater in comparison to training samples. It 
can be explained with over-learning characteristic of AAN’s, when the network adopts to all input vectors of 
training data only, while improvement in response to other data cannot be observed. 

Figure 2. Arhitecture of the neural network used for P loss risk estimation.

Eight variables were selected as the inputs: results of 
soil P test, P fertilizer rate and P transport factors – erosion, 
runoff, leaching, drainage, surface run-off inlets and 
buffers for training of the neural network. All transport 
factors were calculated based on soil properties and 
evaluated by direct observations of fields. Details about P 
loss identification variables are covered by L. Berzina and 
A. Zujevs, 2008. P loss risk class was provided as an output 
variable. The input and output process elements (PEs) are 
fixed by the particular user application, but the number 
of hidden PEs must be specified. Hidden layer includes 27 
hidden neurons that gave the best results. The weights 
(w) and biases (b) are iteratively adjusted during training 
to minimize network error. Networks were trained with 
experimental data that represent the characteristics of 
the process of risk of P loss identification. 71 data point 
was used in this study. For this dataset, each data points 
of P loss risks parameters were randomly divided into 
three subsets: a training set (70% of the total), a validation 
set (15% of the total), and a test set (15% of the total). 
Training data set was used for ANN prediction model 
development, validation set – for ANN performance 

evaluation, but the test set was used to guide the fitting 
of ANN.

Mean squared error algorithm was used for 
performance, and random algorithm was used for data 
division. The ANN modeling approach conducted in 
this study can be divided into three phases: data pre-
processing, model building, and model evaluation.

Basically, the four main steps were taken in this 
forecasting study: 
1)	 model design: choose a suitable model; 
2)	 training: estimate the parameters of the model;
3)	 validation: test the model on data sets to determine 

its validity; 
4)	 interpretation: explain results.

Results and Discussion
ANN was trained in 7 epochs that gave the best 

overall results for prediction of P loss. Model evaluation 
was based on the correlation coefficient and graphical 
examination of both measured and predicted values; 
however, residuals analysis and model stability also are 
suggested and can be used in further analysis of the 
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results (Nour et al., 2006). The training process is plotted 
in Figure 3. It shows on logarithmic scale the precision of 
response of the network to validation and test data sets 
explicated by mean square error. The graph displays that 
neural network is able to predict targets from training 
set with reasonable accuracy already at epochs 4 to 5. 
At epochs 6 to 7, the accuracy of prediction tends to be 
almost absolutely correct. Meanwhile the response to 

validation and test data sets reached a stable unchanging 
level of mean square error of 0.75 for validation and 1.20 
for testing data sets, which is number of times greater 
in comparison to training samples. It can be explained 
with over-learning characteristic of AAN’s, when the 
network adopts to all input vectors of training data only, 
while improvement in response to other data cannot be 
observed.

Figure 3. Training process of ANN.Figure 3. Training process of ANN. 

The correlation of AAN response with expert evaluations in all data sets is shown in Figure 4. It also 
highlights that AAN used and trained in the study shows the strongest correlation with training data (R = 1). The 
correlation with validating and test data sets is also strong, respectively 0.96 and 0.89, but considering the mean 
square error for each data set mentioned above, the architecture and learning parameters of the network should 
be adjusted in order to lower it. 

Figure 4. Correlation of expert’s evaluations to AAN’s predictions. 

The correlation of AAN response with expert 
evaluations in all data sets is shown in Figure 4. It also 
highlights that AAN used and trained in the study shows 
the strongest correlation with training data (R = 1). The 
correlation with validating and test data sets is also 

strong, respectively 0.96 and 0.89, but considering the 
mean square error for each data set mentioned above, 
the architecture and learning parameters of the network 
should be adjusted in order to lower it.
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Figure 3. Training process of ANN. 

The correlation of AAN response with expert evaluations in all data sets is shown in Figure 4. It also 
highlights that AAN used and trained in the study shows the strongest correlation with training data (R = 1). The 
correlation with validating and test data sets is also strong, respectively 0.96 and 0.89, but considering the mean 
square error for each data set mentioned above, the architecture and learning parameters of the network should 
be adjusted in order to lower it. 
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Studies have shown that a neural network with one hidden layer is capable with very high accuracy (Kim
and Gilley, 2008) and this is consistent with the present study. Typically, the increased number of neurons 
enhanced the training-set performance. The testing-set performance increased whilst the additional neurons help 
to correctly predict outputs from inputs, and decreased when the network started to memorize the data due to too 
many neurons. However results indicate potential of network to predict P loss risk class, the truth of results still 
depends on expert judgment about output variable. 

The network with two hidden layers was also trained with Scaled Conjugate Gradient algorithm described 
by M.T. Hagan and others (1996). The architecture of the network is shown in Figure 5: first layer includes 20 
neurons, seconds 45 neurons. Input layer consists of 8 neurons, and output layer of one neuron. Consequently, 
the network structure is 8-20-45-1. 

Figure 5. Comparing architecture of the neural network used for P loss risk estimation. 

Conjugate Gradient algorithm network gave the best results from other 23 experimental networks and was 
chosen for ANN training. ANN was trained in 5 epochs, and Figure 6 displays that neural network is able to 
predict targets from training set with reasonable accuracy already at epoch 0. 

Figure 6. Training process of ANN with Conjugate Gradient algorithm. 

In validation and testing of ANN, measured correlation coefficients between observed and predicted P 
loss risk classes were more than 0.99 for validation data and 0.97 for testing data. The maximum mean squared 
error for validation data set observed was 0.0276. Also several statistical methods can be used to solve a range of 
problems in forecasting and data classification. Since each statistical method uses different data assumptions, 
relationship between the variables being forecasted and the variables used to produce the forecast, as well as the 
distribution of forecast errors must be considered before applying statistical methods. As a result, there are 
certain instances where traditional statistical methods are unsuitable. ANN training algorithms help learn the 
structure of the data, consequently neural networks learn by example, witch is very useful when there is no idea 
of the functional relationship between the dependent and independent variables. The most evident advantage of 
ANN is the use of very sophisticated modelling techniques capable of modelling extremely complex functions, 
at the same time ANN requires fewer statistical assumptions. This is also reason why ANN could be valuable 
alternative approach to P Index modelling by considering assumption that P loss is extremely difficult to predict 
via complicated relationships intermediary factors that accelerate P loss. The basis of the power of the neural 
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and Figure 6 displays that neural network is able to 
predict targets from training set with reasonable accuracy 
already at epoch 0.
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Figure 6. Training process of ANN with Conjugate Gradient algorithm.
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to correctly predict outputs from inputs, and decreased when the network started to memorize the data due to too 
many neurons. However results indicate potential of network to predict P loss risk class, the truth of results still 
depends on expert judgment about output variable. 
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In validation and testing of ANN, measured correlation coefficients between observed and predicted P 
loss risk classes were more than 0.99 for validation data and 0.97 for testing data. The maximum mean squared 
error for validation data set observed was 0.0276. Also several statistical methods can be used to solve a range of 
problems in forecasting and data classification. Since each statistical method uses different data assumptions, 
relationship between the variables being forecasted and the variables used to produce the forecast, as well as the 
distribution of forecast errors must be considered before applying statistical methods. As a result, there are 
certain instances where traditional statistical methods are unsuitable. ANN training algorithms help learn the 
structure of the data, consequently neural networks learn by example, witch is very useful when there is no idea 
of the functional relationship between the dependent and independent variables. The most evident advantage of 
ANN is the use of very sophisticated modelling techniques capable of modelling extremely complex functions, 
at the same time ANN requires fewer statistical assumptions. This is also reason why ANN could be valuable 
alternative approach to P Index modelling by considering assumption that P loss is extremely difficult to predict 
via complicated relationships intermediary factors that accelerate P loss. The basis of the power of the neural 

In validation and testing of ANN, measured correlation 
coefficients between observed and predicted P loss risk 
classes were more than 0.99 for validation data and 0.97 
for testing data. The maximum mean squared error for 
validation data set observed was 0.0276. Also several 
statistical methods can be used to solve a range of 
problems in forecasting and data classification. Since 
each statistical method uses different data assumptions, 
relationship between the variables being forecasted 
and the variables used to produce the forecast, as well 
as the distribution of forecast errors must be considered 
before applying statistical methods. As a result, there are 
certain instances where traditional statistical methods 
are unsuitable. ANN training algorithms help learn the 
structure of the data, consequently neural networks learn 
by example, witch is very useful when there is no idea 
of the functional relationship between the dependent 
and independent variables. The most evident advantage 
of ANN is the use of very sophisticated modelling 
techniques capable of modelling extremely complex 
functions, at the same time ANN requires fewer statistical 
assumptions. This is also reason why ANN could be 
valuable alternative approach to P Index modelling by 
considering assumption that P loss is extremely difficult 
to predict via complicated relationships intermediary 
factors that accelerate P loss. The basis of the power of 
the neural networks in P Index calculation is to let to 
define the input-output relationship functional form 
using training data.

Conclusions
ANN model with Levenberg-Marquardt training 

algorithm was developed and used for forecasting the 
risk class of P loss for agriculture fields. In all, 70% of data 
observed in field experiments in the central part of Latvia 
have been used for training, and 30% of data have been 
used for validation and testing of ANN performance. 
In validation and testing of ANN measured correlation 
coefficient between observed and predicted P loss 
risk classes was more than 0.96 for validation data and 
0.89 for testing data, which shows the ability of ANN in 
acceptable forecasting of risk class for selected fields. 
The maximum mean squared error for validation data 
set was 0.75, and for testing data set was 1.2, witch is 
still acceptable for P risk classes’ prediction that varies 
from 0 to 8 corresponding to good model performance. 
However, future research on the application of other 
algorithms is required by considering the amount of 
squared mean error, for example, the use of Conjugate 
Gradient algorithm that gave correlation coefficients 
between observed and predicted P loss risk classes 
with values 0.99 for validation data and 0.97 for testing 
data. The survey results confirm high capabilities of ANN 
to predict risk of P loss and suggest future research on 
application of other algorithms. 
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