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Abstract. Use of soil thermal energy in systems with thermal pumps is important during cold winters when the 
heat extracted from soil is insufficient, as well as when alternative thermal energy sources should be used for 
a shorter time. The amount of heat extracted from soil depends on several factors, e.g., cold carrier’s technical 
parameters, the depth at which the cold carrier pipes are placed in soil as well as the distance between them, 
composition of soil, and average monthly air temperature during the building heating period. Thermal amount 
which is necessary for the building heating is influenced by geometrical parameters of a building, air temperature 
in rooms, as well as building technical parameters which are estimated by heat loss during the heating period. 
A computer program mathematical model of the thermal pumps’ system is developed and analyzed in the paper. 
When planning the heating system, the mathematical model provides a possibility of calculating the distance 
between cold bearers (which is one of the main thermal pumps’ construction parameters) with certain reserve. 
The developed mathematical model can be applied for any outdoor air temperature and soil thermophysical 
parameters which are considered when modifying the approximate coefficients. With the help of the computer 
system it is possible to analyze the already established thermal pump systems and to predict their efficiency – to 
determine the object’s provision with thermal energy during the building heating season, to evaluate additional 
functions for the system, etc.
Key words: thermal pumps, soil, mathematical model, cold carriers.

Introduction 
Because of the lack of traditional energy sources 

and increased environment pollution, energy saving is 
becoming more and more popular. To economically 
use traditional energy sources, as well as to acquire 
and utilize more extensively the alternative energy 
sources, application of modern technologies is 
increasing throughout the world. The most commonly 
used environment-friendly alternative energy sources 
are wind, sun, soil, and water. In Latvia, use of 
thermal pumps is expanding as they allow utilization 
of one of the alternative energy sources – solar 

heat accumulated in soil, water, air – with minimal 
electrical energy consumption. 

The heat accumulated in soil upper or deeper 
layers can be used by installing boreholes in the 
soil (Blumberga, 2008). Under Latvia’s climatic 
conditions, the soil upper level is rarely freezing 
deeper than 1.2–1.5 m. 

Soil heat is usually used for building heating 
and water heating. The thermal pump heating 
system consists of three parts: surface collectors for 
extracting the heat from soil, a thermal pump for 
concentrating and shifting the external environment 
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Fig. 1. The scheme of using soil surface heat for the building heating (Fakti par ..., 1997). 

heat intended for heating of the building and water, 
and internal building heating systems (Fig. 1) 
(Fakti par ..., 1997). 

For the building heating systems which use heat 
accumulated in the upper soil level, the cold carrier 
usually is made from polyethylene pipes. 

The amount of heat extracted from soil and the 
power of heating system are influenced by the cold 
carriers’ parameters (material of pipes, thickness, 
internal diameter), depth and distance between the 
pipes, soil texture (clayey, sandy, etc.), soil moisture, 
and soil freezing depth. When designing the building 
heating systems, it is very important to evaluate these 
parameters in order to provide minimal additional 
heating for the building heating system during the cold 
winter months. If there are mistakes in the process of 
engineering the heating system, system defects and 
even system work breaks during the heating season 
are possible. Mathematical modelling is widely used 
in the world (Blumberga, 2008; Hectors, van Reusel, 
Driesen, 2008; Cepite, Jakovičs, Halbedel, 2008; 
PrzyŁucki, 2008; Kuvaldin, Lepeshkin, 2008) for 
solving technical issues in various sciences.  

The purpose of the research was to develop 
a mathematical model which would include the 
above-mentioned parameters, climatic conditions, 
different soil types, and building heating loss, 
which influences the heating system operation. 
By means of the developed mathematical model, 
the necessary distance between cold carriers can be 
determined. 

Materials and Methods
A theorem in mathematics has been proven that 

for a correctly formulated mathematical physics 
problem (in our case it consists of equation (1), 
beginning condition (5), and boundary conditions 
(2-4)) there is only one solution – formulas (14–16). 
The problem solution scheme is well known and 
relatively large therefore, in this paper, it is not 
reflected fully but only to the extent that specialists 
in this field could develop a solution (14–16). 
For demonstration purposes the paper presents 
two cities, Dobele and Daugavpils, with different 
climatic conditions and two types of soil (sandy 
loam and loamy sand), polyethylene cold carrier 
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pipes with internal diameter of 40 mm, built at the depth of 1.2 m, distance between the pipes – 1.5 m. Also 
other values are used. 

It can be assumed that in a definite soil area G ( )h,0(y)b;0(x ∈∈ ) (Figs 1 and 2) there are installed cold 
carriers that serve as heat energy transformers for the building heating.

In order to calculate temperature division in soil, which in the plane xy (Figure 2) is presented as dotted cold 
carriers, a mathematical physics problem can be formulated. It consists of:

non-stationary heat conduct equation: – 

, (1)

where
T – temperature, °C;
t – time, s;

λ – soil thermal conductivity coefficient, W m-1 K-1; 

ρ
λ

=
c

a – temperature conduct coefficient, m2 s-1 (c – soil specific thermal capacity, J kg-1 K-1; 
ρ – soil density, kg m-3);

2

2

2

2

yx ∂
∂

+
∂
∂

≡∆ – Laplace operator (x, y – coordinates);

q(t) – cold carriers’ intensity (rate), W m-1;
δ(x-x0k; y-y0) – cold carriers’ delta function (describes dotted coordinates x0k and y0 of cold 

carriers), m-2;
N – number of cold carriers in soil;

boundary conditions in the direction of x axis (heat does not move in the direction of x axis at area – 
limits x=0 un x=b):

0
x
T

0x
=

∂
∂

=
and 0
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bx
=

∂
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=
, (2)

where
b – area latitude, m;

Fig. 2. The scheme of the mathematical problem for the building heating using thermal pumps.



LLU Raksti 25 (320), 2010; 47

   

44-53

U. Iljins et al.        Mathematical Model for Using Soil Heat with Thermal Pumps

Table 1
Approximation coefficients of functions f1(t) and f2(t) 

Location
Coefficient ai values for function  f1(t)   Coefficient bi values for function f2(t)  

1 2 3 1 2 3
Dobele 

(sandy loam) 0.0014 -0.2666 7.1821 0.00009 -0.0465 10.410

Daugavpils 
(loamy sand) 0.0015 -0.2760 6.3384 0.00020 -0.0660 11.118

boundary conditions in the direction of  y axis:– 
)t(fT 10y =

= , (3)

which defines temperature change on soil upper level during the heating period:

)t(fT 2hy =
= , (4)

which defines temperature changes in soil depth (h) during the heating period;

beginning condition:– 

)y,0(FT 0t == , (5)

where function F(0,y) defines temperature division in the defined soil area G( )h,0(y)b;0(x ∈∈ ) during time 
t=0 (Figure 2).

Functions f1(t) and f2(t) of the expressions (3 and 4) describe the average temperature change during the 
heating season, which close to the experimental measures (Справочник …, 1965) can be approximated by 
polynomials:

32
2

11 atata)t(f ++= , (6)

32
2

12 btbtb)t(f ++= . (7)

Coefficients ai and bi of the expressions (6 and 7) can be developed by the smallest quadrate method, which, 
for example, for the Dobele sandy loam soil and the Daugavpils loamy sand soil are presented in Table 1 (time 
periods were measured in days, the heating season started on October 15).

Figures 3 and 4 present the experimentally defined (Справочник …, 1965) average monthly temperature 
and its approximation functions f1(t) and f2(t).

In a sufficient depth, where annual temperature does not change, the geometrical gradient exists from 
0.01 to 0.037 K m-1 (Pandalons, Iljins, 2001), which at a sufficient value (λ=1.5 W m-1 K-1) of soil thermal 
conductivity produces heat flow of 0.015–0.055 W m-2, which, in its turn, is very little and may not be taken 
into account regarding the building heating. As the function’s f2(t) derivation according to y is proportional to 
the geometrical gradient, the function’s  f2(t) derivation according to y should be zero (0), which means that at 
the soil area where cold carriers are installed, heat from deeper soil layers is not supplied.

The mathematical physics problem (1–5) is solved using the popular method of variables separation. 
The scheme of the method is well known and described in mathematics textbooks. The scheme extension 
is relatively long and consists of lines of various integrals’ calculations and long algebraic transformations, 
therefore all mathematical transformations are not presented. All necessary formulas are presented for a reader 
to calculate a solution. 

Attention has to be drawn to the function F(t, x, y) (5). This formula has to be presented in 
a simple form, but maximum close to the actual soil temperature division. As there is no foundation 
to consider that at the start moment t=0 temperature division exists on x axis, it is presumed that 
function F does not depend on x. The function’s F dependence on y can be developed differently. One of the 
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Fig. 4. Changes in the monthly average temperature in soil f2(t) during the heating season 
(starting on October 15), y=h=3.2 m, in Dobele (sandy loam) and Daugavpils (loamy sand).

Fig. 3. Changes in the monthly average temperature f1(t) during the heating season (starting on October 15) 
in the soil upper level (y=0) in Dobele (sandy loam) and Daugavpils (loamy sand).

possibilities described by the authors is to construct the function F as a linear combination of the functions 
f1(t) and  f2(t). However, the obtained data varied significantly from the temperature division data on y 
coordinate found in the literature (Справочник …, 1965). Therefore the authors chose quadrate function’s 
F dependence on y:

[ ] [ ] 2

2

12121 h
y)t(f)t(f

h
y)t(f)t(f2)t(f)y;t(F ⋅−−⋅−+= ,

                                            
(8)

which corresponds to the literature (Справочник …, 1965) data. At the same time, function F has to satisfy 
certain limits which are discussed further in the text.  

Compliance of the beginning condition (5), given by formula (8) at t=0 F(0, y), with experimental data 
is shown in Figure 5.

The basic idea of the variables separation method is to find the problem (1–5) solution as an 
infinite-line sum, where each line member is a multiplication of three functions; moreover, each of these 
three functions is only a function for a single argument function. Construction of a solution is possible only if 
problem limits (2–4) are homogeneous. The limit (2) is homogeneous, but limits (3, 4) are not homogeneous. 
Thus, the solution by substitution 
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Fig. 5. Dependence of the function F(0, y/h) on the relative depth y/h at the beginning 
of the heating season, October 15, in Dobele.

Fig. 6. Changes in the average monthly air temperature Te(t) in the heating season, 
starting on October 15, in Dobele.

)y,x,t(U)y,x,t(F)y,x,t(T += ,                                                       (9)

is divided into two parts. If the function F satisfies the limits, the function’s U homogeneous limits remain.  
As it is seen, the authors’ constructed function (8) does not contain coordinate x, and function’s F(t, y) limits  
(2–4) are satisfied. Thus, function’s U limits are homogeneous.

The second function which should be found is the necessary intensity q(t) of cold 
carriers’ dependence on time. This can be developed presuming that cold carriers’ intensity 
is proportional to the monthly average temperature difference in the inside and outside air. 
Using (Справочник …, 1965), data of an average monthly temperature change during the heating season 
in the Dobele area is developed (Fig. 6). This dependence can be quite precisely approximated by a 
polynomial: 

                                                                (10)

where coefficients p=0.0013 K d-2, r=-0.2527 K d-1, and q=7.5412 K are obtained by the smallest quadrate 
method (time (t) is calculated in days, starting on October 15). 
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Latvian building standards (Latvijas būvnormatīvs ..., 2001) present values of the coefficient hA in dwelling 
houses, retirement homes, hospitals, and kindergartens. The normative heat loss coefficient HTR for those 
buildings can be determined according to formula:

                                                                      (11)

where  
hA – specific heat loss coefficient of a building’s one-square meter floor area (hA values for 

one-, two-, three-, four- and more storey buildings are, respectively, 1.05, 0.8, 0.7, and 
0.6 W m-2 K-1) (Latvijas būvnormatīvs ..., 2001);

A – sum of floor area at all building stories, m2.

Then the cold carriers’ intensity q(t) can be found using formula:

                                                       (12)

where   
N(t) – total heating capacity used, depending on time, W;

L – cold carriers’ total length, m;
Ti – internal temperature of a building, °C.

Considering formulas (10) and (11), the expression (12) can be rewritten in the following form:

32
2

1 ctctc)t(q ++= ,                                                               (13)
where

p
L

Ahc A
1 = ;

r
L

Ahc A
2 = ;

)qT(
L

Ahc i
A

3 −= .

For example, considering values Ti=20 °C, A=274 m2, L=600 m, and hA=0.8 W m-2 K-1, the following 
coefficients are obtained: c1=-0.0004749 W m-1 d-2, c2=0.09233 W m-1 d-1, and c3=4.5516 W m-1.

Results
By solving problems (1-13) of mathematical physics by the method of separation of variables, a solution as 

an infinite line sum is obtained: 
)y,x,t(U)y,t(T)y,x,t(T += ,                                                     (14)

where the expression’s (14) first member does not contain coordinate x. The expression’s (14) 
first member is calculated by summing the variable index j:

.                                (15)

The function F(t,y) is presented by expression (8), but coefficients Fj, Ej, Dj can be solved using formulas:

a
F 2

j

j
j

η
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= ,
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h
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=η ;
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j332j
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numerical values of coefficients a1-3 and  b1-3 are presented in Table 1;
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The function U in expression (14) is a double sum of variables i and j:

,                         (16)

Fig. 7. Examples of temperature division at various soil depths y (hA=0.8 W m-2 K-1), 
depending on the placement of cold carriers: 

A – cold carriers placed at an equal distance of 1.5 m; B – three groups of cold carriers placed at
different distances (in the graph – from the left): 1st  group – at the distance of 0.75 m (4 cold carriers);

2nd group – at the distance of 1 m (3 cold carriers); 3rd group – at the distance of 1.5 m (3 cold carriers).

where

 

N – number of cold carriers in area G;

x0k, y0 – cold carriers’ coordinates, m;

c1, c2, c3 – are taken from expression (13).

Figure 7 shows temperature division in soil (hA=0.8 W m-2 K-1, A=274 m2), which is calculated by 
using formulas (15) and (16). In Fig. 7A, temperature on the cold carriers’ surface is identical (the lowest 
temperature is -4.1 °C), except on the cold carriers on either side of the graph, where the temperature is 
higher. Fig. 7B demonstrates that with the decrease of the distance between the cold carriers, decreases also 
the temperature on their surface (first group – -5.5 °C, second group – -4.6 °C, third group – -3.9 °C).
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Since constructively it is not allowed that the 
temperature on cold carrier’s surface is lower than 
-5 °C (Viesmann ..., 2006), it is necessary to 
develop a computer program which would analyze 
temperature division in soil according to the 
following algorithm. Firstly, the collectors’ working 
time has to be chosen when the temperature on 
the cold carrier elements is the lowest. It could be 
110–115 days (i.e., on February 2–7) beginning from 
the system’s start-up on October 15. At this time, 
using formulas (15) and (16), a graph is developed  
according to the parameters of the building, 
soil, and climate (Fig. 8). For example, if  
hA=0.8 W m-2 K-1, A=274 m2, y0=1.2, the cold 
carrier’s diameter is 40 mm, and the lowest 
temperature on the cold carrier’s surface is -4 °C, 
then distance between the cold carriers has to be 
1.6 m. Whereas, if the distance between the cold 
carriers is 1.0 m, the lowest temperature on the cold 
carriers’ surface will be approximately -5.2 °C, 
which means that pauses in the system’s operation 
might occur. The graph shows temperature on the 
average cold carriers’ surface depending on distance 
(d) between them at different values of the building’s 
specific heat loss coefficient hA. The building heat 
loss coefficient can be determined by the building’s 
heat usage in the previous years or by the building 
project energy audit. The minimal distance between 
cold carriers, demonstrated in Figure 8, is determined 
for engineering the thermal pump, which will allow 

Fig. 8. The temperature on the cold carriers’ surface, t=112 d (days), starting from the beginning 
of the heating season (October 15), depending on the distance between the cold carriers (d), 

for different building specific heat loss coefficients, hA=0.5-1.1 W m-2 K-1, 
at cold carrier’s diameter of 40 mm and installation depth y0=1.2 m.

to keep the temperature at the necessary temperature 
limit, i.e., at -5 °C . 

Conclusions
The mathematical model with an appropriate 1. 
computer programme, using a surface collector 
for extracting the soil heat, ensures the following 
benefits:
designing of the soil heat usage systems (to – 
determine parameters of systems) for heating 
of dwelling houses and water. The program is 
able to evaluate collectors of different diameter, 
depth, and distance; 
evaluation and analysis of various soil – 
heat usage projects with particular 
parameters of thermal pumps, collectors 
(material, size, installation depth, distance 
between collectors, and total length), soil 
(soil type, moisture, density, etc.), as well as 
climatic conditions (air temperature) of the 
geographical area. For example, specification of 
the winter air temperature, at which the system 
will be able to heat the building, as well as 
prediction of the number of days, during which 
alternative heating sources will be used at a low 
air temperature; 
analogical analysis of the constructed soil heat – 
usage systems, as well as determination of 
whether additional building or water heating 
systems can or cannot be connected.  
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Anotācija
Zemes virskārtā akumulētās siltuma enerģijas izmantošanas sistēmās ar siltuma sūkņiem ir svarīgi, lai aukstās 
ziemās, kad no zemes iegūtais siltuma daudzums ir nepietiekams, ēkas apsildīšanai pēc iespējas īsāku laiku 
būtu jāizmanto alternatīvi siltuma enerģijas avoti. No zemes virskārtas iegūstamais siltuma daudzums ir 
atkarīgs no vairākiem faktoriem, piemēram, aukstuma nesēja tehniskajiem parametriem, aukstuma nesēja 
cauruļu novietošanas dziļuma zemē un to savstarpējā attāluma, grunts veida un mitruma, kā arī no apsildāmās 
ēkas āra gaisa mēnešu vidējās temperatūras ēkas apsildes periodā. Savukārt ēkas apsildīšanai nepieciešamo 
siltuma daudzumu ietekmē apsildāmo telpu ģeometriskie parametri, telpās nodrošināmā gaisa temperatūra, kā 
arī ēkas tehniskie parametri, ko novērtē ar siltuma zudumiem apsildes periodā. Darbā izstrādāts un analizēts 
siltuma sūkņa sistēmas matemātiskais modelis ar datorprogrammu, kas sistēmas projektēšanas gaitā ievērtē 
iepriekšminētos faktorus. Matemātiskais modelis dod iespēju, projektējot apkures sistēmu, aprēķināt ar 
zināmu rezervi aukstuma nesēju savstarpējo attālumu, kas ir viens no galvenajiem siltuma sūkņa izbūves 
parametriem. Izveidotais matemātiskais modelis ir piemērojams jebkurām āra gaisa temperatūrām un jebkuriem 
grunts termofizikālajiem parametriem, kas tiek ievēroti, variējot attiecīgos aproksimācijas koeficientus. Ar 
datorprogrammas palīdzību iespējams analizēt arī jau ierīkotas siltuma sūkņu sistēmas un prognozēt to darbības 
efektivitāti – noteikt objekta nodrošinājumu ar siltuma enerģiju ēkas apsildes sezonā, novērtēt iespējas sistēmai 
uzticēt papildu funkcijas u.tml. 

The mathematical model and computer program 2. 
can be changed for designing the building’s 
heating systems, using vertical collectors, as well 
as collectors installed in an open-water facility.
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