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Abstract. The paper deals with methodological items using computational methods for development and
optimising of precision control of biological systems on molecular level. Systems biology approach to dynamics
of cellular molecular processes using quantitative modelling allows describing these processes with differential
equations. Thus automatic control theory methods optimising control activities accordingly to a set of efficiency
criteria can be used. Possible simultaneous use of systems biology and automatic control theory methods are
analysed depending on amount of available information and quality of model.

Glycolysis as a process of metabolism is used as a demonstration example. Glycolysis processes are analysed
with biochemical network simulator COPASI 4.0 using SBML standard compatible models. Six glycolysis
models with different scopes of different authors are analysed to find out common and different features as well
as applied data. Models include following parameters: cellular compartments (1-3), number of species (15-34),
reactions (14-29). Extraction of control systems development and optimisation related information from models
is analysed. Methods of Metabolic Control Analysis (MCA) are analysed. Possibility of control development
using dynamic models of molecular processes allows to optimise control activities afforcing experimental
methods by mathematical ones. That is a promising direction in precision agriculture research due to savings of
time and financial resources.
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Introduction

Big part of activities in medicine, veterinary science, agriculture (precision agriculture in particu-
lar), food technology, ecology and biotechnology and other biological objects related branches can be
defined as control of biological objects.

Control of biological object usually is carried out by changing parameters of environment of the
process. Biological system reacts on those changes as a control system to compensate changes or reach
new acceptable sate. Thus competition of two control systems occurs. One of those systems is
biological control system and another one is artificial control system.

Biological control system (BCS) is in biological reproduction process developed control system
that ensures internal processes within biological object and interaction processes with environment.
Features of biological objects are metabolism and reproduction. BCS controlled biological objects are
for example all living organisms (plants, animals, humans) as well as their subsystems (body tempera-
ture control, metabolism, processes within a cell).

Artificial control system (ACS) is a human designed control system. It can be executed by
technical, chemical, biological or other means. By ACS in this paper is meant very wide range of
control systems for example simple technical control system (climate control system in a building),
complex technical control system (control system of an aircraft), control system for natural non
biological objects (irrigation systems), human made control system of biological objects (fermentation
process control), human designed control of biological object by another biological object (pest
control by purposeful introduction of their biological enemies).

To assess and predict dynamic behaviour of BCS a dynamic model becomes necessary.

Systems Biology (SB) aims to understand and describe complexity and dynamics of biological
systems (controlled by BCS) in holistic way confronting dynamic models (ir silico) with dynamic
experiments in the laboratory (in vitro). This approach partially is a result of unsuccessful trials to
control biological objects. This relates to medicine, veterinary, industry, agriculture and other biology
related branches. Dynamic models of particular processes are available on the Internet and can be used
for development of control system.

Objective of the paper is to describe methodology of dynamic molecular process models
application developing control algorithm for cellular processes.

Task of the paper is to demonstrate use of glycolysis dynamic models developing control system.
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Materials and methods

Development process of control system consists on several steps: 1) mathematical description or
model of the process of interest, 2) determination of control means and methods, 3) construction of the
control system. In case of failure the cycle has to be repeated.

Models of the process of interest

Mathematical models of biological processes can be used from public data bases and simulations
can be performed using free available modelling software. Dynamic models of cellular processes as
well as necessary software usually are available in a common standard.

SBML — machine-readable model definition language based upon XML, the eXtensible Markup
Language (Bray et al. 2000; Bosak and Bray 1999), which is a simple and portable text-based sub-
strate that has gained widespread acceptance in computational biology.

SBML project is an effort to create a machine-readable format for representing computational
models at the biochemical reaction level (Finney and Hucka 2003; Hucka et al. 2003). By supporting
SBML as input and output formats, different software tools can operate on the identical representation
of a model, removing chance for errors in translation and assuring a common starting point for
analyses and simulations.

SBML standard software to operate SBML models is listed on the web (www.sbml.org). In this
article software Complex Pathway Simulator (COPASI — www.copasi.org) (Hoops et al. 2006) will be
used.

COPASI incorporates a model generator, different simulation techniques, optimization routines,
methods from nonlinear dynamics and user-friendly visualization platforms enabling experimental
biochemists simulate complex metabolic processes in cells without having to master complex
mathematical and computer skills.

BioModels Database is an online resource for storing and serving quantitative models of
biomedical and industrial interest. All the models in BioModels Database have been described in the
peer-reviewed scientific literature.

The models stored in the curated branch of BioModels Database are compliant with MIRIAM (Le
Novere et al. 2005), the standard of model curation and annotation. The models have been simulated
by curators to check that when intentiated in simulations, they provide the same results that described
in the publication. Model components are annotated, so the users can conveniently identify each model
element and retrieve further information from other resources.

BioModels Database (http://www.ebi.ac.uk/biomodels) is developed in collaboration by the teams
of Nicolas Le Noveére (EMBL-EBI, United-Kingdom), Michael Hucka (SBML Team, Caltech, USA)
in collaboration with Upinder Bhalla (DOQCS, National Center for Biological Sciences, India),
Herbert Sauro (Keck Graduate Institute, USA), Hiroaki Kitano (Systems Biology Institute, Japan),
Hans Westerhoff and Jacky Snoep (JWS Online, Stellenbosch (ZA) and Manchester (UK) Universities
and Stellenbosh University, ZA), as part of the BioModels.net initiative.

JWS Online (http://jjj.biochem.sun.ac.za) aims to provide a service to the Systems Biology com-
munity by 1) giving access to a database of curated models of biological systems, and 2) allowing the
users to run these models in a web browser via an easy to use interface, and 3) helping in reviewing of
manuscripts containing kinetic models. In addition to this service role, JWS Online is an important
component of an ambitious research initiative: The Silicon Cell. Whereas as a service JWS Online is a
repository of published models, in the research activity models are not stored as published but are
changed to reflect standardized notation of metabolites and enzymes, and a direct link between model
and experimental data is provided.

SBML standard models contain several groups of parameters described below.

Compartments — fields of cells of distinct cell lineage, cell affinity, and genetic identity. In a
developing organ, all cells within a compartment possess similar affinities, and so intermingle with
each other. However, cells in neighbouring compartments have different cell affinity values and so
never mix, thereby restricting the movement of cells to within compartments. Much cell proliferation
may follow the appearance of compartments during development, hence this affinity-based
subdivision has the effect of forcing cell lineages to stay within compartment boundaries.

120



ENGINEERING FOR RURAL DEVELOPMENT Jelgava, 24.-25.05.2007.

Metabolites — species involved in metabolic reactions.

Moiety — a functional group, or part of a molecule. In organic chemistry, functional groups (or
moieties) are specific groups of atoms within molecules that are responsible for the characteristic
chemical reactions of those molecules. The same functional group will undergo the same or similar
chemical reaction(s) regardless of the size of the molecule it is a part of.

Reactions — Different chemical reactions are used in combinations in chemical synthesis in order
to get a desired product. In biochemistry, series of chemical reactions aided by enzymes form meta-
bolic pathways, since straight synthesis of a product would be energetically impossible in conditions
within a cell. Chemical reactions are also divided into organic reactions and inorganic reactions.

Determination of control means and methods

Possibility to simulate the process of interest allows optimisation of control means and methods.
Criteria of efficiency can have several parameters where usually costs factor has one of the most
important roles.

Methods of Metabolic Control Analysis (MCA) (Fell, 2005; Klipp et al., 2005) are used to optimi-
se task setting of control system. Any metabolic network reaches steady state in constant environment.
Several rules can be applied for a steady state and area near to that. MCA is a theory developed for
processes in the steady state of biochemical system.

Control coefficients. When defining control coefficients, we refer to a stable steady state of the
metabolic system characterized by steady-state concentrations S =S(p) and steady-state fluxes
J =v(S(p),p). Any sufficiently small perturbation of an individual reaction rate by a parameter change,
Vi P Vx + Aw, drives the system to a new steady state in close proximity with J 2J + AJ and
S 28 + AS. A measure for the change of fluxes and concentrations are the control coefficients.

The flux-control coefficient for the control of rate v, over flux J; is defined as

;w9
¢ J,; o, ’
while the concentration-control coefficient of concentration S; with respect to v, reads
Cl = v 95
S, ov,

The summation theorems make a statement about the total control over a certain steady-state flux
of concentration. The flux-control coefficients fulfil

r

2.C =1,

k=1

where r is the number of reactions. The flux-control coefficients of a metabolic network for one
steady-state flux sum up to 1. This means that all enzymatic reactions can share the control over this
flux. For the concentration-control coefficients, we have

ch =0.
k=1

The control coefficients of a metabolic network for one steady-state concentration are balanced.
This means again that the enzymatic reactions can share the control over this concentration, but some
exert a negative control while others exert a positive control.

Results and discussion

Search of dynamic models of glycolysis without focusing on particular organism resulted in 6
models summarised in the table. Number of models parameters indicate high variety in the scope of
models. Appropriate model has to be chosen depending on the biological process or product of
interest.
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Table. Comparison of glycolysis models by quantitative characteristics of models parameters

Nr. Source Compartments Metabolites Moiety Reactions
1 (Nielsen et al. 1998) 1 15 0 25
2 (Teusink et al. 2000) 2 21 1 17
3 (Bakker et al. 2001) 3 17 2 14
4 (Hynne et al. 2001) 2 25 2 24
5 (Hoefnagel 2002) 1 34 4 29
6 (Pritchard and Kell 2002) 1 25 2 19

H<r  [HK [Pl FFK [ALD [ TPI [GaPoH [ Pok | PGH [Eno [Pv
HXT 1.01425) 021398 0.000450767 0.00138748 0.000474503 365247206 002786812 00004397348 0000207757 0.000928611) 01
HI 1.01425) 021338 0.000450767 0.00138748 0.000474503 3.65247e-06 0.0218612 0000437348 0000207757 0.000928611) 04
Fal 126309 0266475 0.000561361 0.0017273 0.000530919 45485905 00272247 0.000S13332 000025873 000115644 0
PFK 126308 0266475 0.000561361 0.0017279 0.000590919 454855005 00272247 0.000813992 000025873 000115644 0
ALD 1.26309 0.266478 0.000561361 00017279 0.000590919) 4.54859e-06 0.0272247 0000619392 0.00025873 000715644 00
TFI 1.45026 0.305967 0.000644547 000198335 0.000673486 2.76491e-05 0164706 0.00375088 0.00156523 000693634
GAPDH 134068 0262645 0.000595845 0.00183404 0.000627219 1M 247005 00B42163 0.00191787 0.000800348 0.00357731] O
FGK 1.34088| 0.282848 0000595845 0.00183404 0000627219 1.41247e-05 0.0842163 000191787 0.000800343  0.00357731) 04
PG 1.34068| 0.282848 0.000595845 0.00183404 0.000627219) 1.41247e-05 0.0842163 0.00131757 0.000800343 0.00357731) 04
END 134066 0262645 0.000595645 0.00183404 0.000627219 1M 247005 0L0B42163 0.00191787 0.000800348 0.00357731] 0
P 1.34088| 0.282848 0000595845 0.00183404 0000627219 1.41247e-05 0.0842163 000191787 0.000800343  0.00357731) 04
FDC 1.34068| 0.282848 0.000595845 0.00183404 0.000627219) 1.41247e-05 0.0842163 0.00131757 0.000800343 0.00357731) 04
ADH 137966 0291075 0000613182 0.0018674 0.000G45469 1.89%e05 0112868 000257037 000107264 000479435 0
ATPase 209576 04421581 000093143 0.00286693 0.000920475 3.99555e-05) 0238016 000542037 000226198 00701104 C
AR i -inf -inf -inf Ainf i -inf -inf i i
G3PDH 0809125 0170704 0.000359604 0.00110688 0.000378530 51478305 0306217 000697362 -0.00291013 00130074 <
Glycogen Branch 0 1] 1] 1] 1] 1] 1] 1] 1] 1]
Trehalose Branch 0l 0 0 0 0 0 0 0 0 0
Succinaie Branch | (1809125 0170704 0.000359604 0.00110665 0.000378539 51478305 0306217 000697352 -0.00291013  -0.0130074) £

Fig. 1. Flux Control Coefficients: COPASI screenshot of Metabolic Control Analysis of yeast
glycolysis model (Pritchard and Kell, 2002)

In Figure 1, there can see connection between enzymes (columns) and fluxes (rows). With these
coefficients we can determine how significant is connection between enzymes and fluxes. In first
column there are coefficients between ~0.81 ... ~2.1, that means HXT enzyme have very significant
affect on almost all fluxes. In second column coefficients are between ~0.17 ... ~0.44, which means
HK enzyme have many times smaller significance, compared with HXT enzyme, but still have
significant affect on almost all fluxes. In sixth (TPI) column coefficients are very small ~—-5.1e-05 ...
~4.0e-05, which means TPI enzyme have insignificant affect on fluxes and this column we can

discount and continue investigation of fluxes of glycolysis further with just significant enzymes. For

CPFK

example C, ~0.27, if we will increase/decrease concentration of enzyme vyx per 1%, flux PFK

(Jprx) will increase/decrease per ~0.27%.

HAT [ HK | P | FFK | AL [ PRI |GoFDH | PEK | Pim | Ena [ Frk
NAD | 0.00424576 000089653 18887506 581366006 19882008 37387308 002277 000506354 -0.000211307 0000544478 -0
ADP 0082251 0.0173628 3E56%e05 0000112513 38480105 15667108 000934127 000021273 B&7747elS| DODDIETHE 58
GEP 297151 0628917 035187 03172 035283 217058208 00817685 000185213 0000777087 000347334 000
AcAld | 0809124  0170704) 0000359604 000110888 0000378539 514782005 0306217 000697352 000291013 00130074 -
DHAP 1565 0330175 0.0006SS544) 000214092 0.000732166] 0000147765 0679079  -0.0200194) -0.00835432 00373412 -
GAP 156502 033018 0000695553 0.00214095 0000732178 26007905 087926 00200235 -0.00835604 0.037ME3 -
PeG 229122 0481279 000101386 0.0031207] 000106724 245532005 0146309 000330374 000139121 445 -
Fep 3409 0719916 000051531 138216 0472602 BEErSeld] 0121747 000277256 0.00715702 0.00517153 0.0
GLC | 01352 204513 000430326 0013261 000453511 349089005  0.0s94 000475823 0.007%8566  0.0088753 O
FYR 077341 016217 0000343732 0.00705802) 000031831 814825005 D.04e5820  0.00110638 0000461708 000208388 0.0
BFG 35191 0742228 000156357 00041275 0001645 4814¥e05 0252865 0433026 0180706 0807702
FEP 167686 0.395%69 0000934145 0.00256754 00078057 226302005 0134301 000305845 000127632 0.00570477
FleoP | 32852 0684721 000144243 000443986 148943 5.46198e05 0724704 00GG036) 0.006eE7Z  0.007EET O
FaG 224375 0473374 0000997205 000305345 Q00104571 24066705 0143501 000326798 0264717 aew -
ATP 209676 0447151 000099143 0.00268693 000080475 399656e05 0230016 000542037 000226158  notoiind o
MADH | 0074733 00156626 329946005 QOOUONSEY 34732005 652772e05 03419 (00834553 0.00369134 00164991 0o
AMP 193125 0407445 0000858 000264195 DODDSOISTS EE19%e-05  0.219333 000433431 000208443 LO0STET OU

Fig. 2. Concentration Control Coefficients: COPASI screenshot of Metabolic Control Analysis of
yeast glycolysis model (Pritchard and Kell, 2002)

In Figure 2, there can see connection between enzymes (columns) and concentration (rows). With
these coefficients, like it is with fluxes, we can determine how significant is connection between
enzymes and concentration. Like it is with fluxes, there can select enzymes, which have significant

affect on concentration, and work further just with them. For example C'% ~—0.47, if we will
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increase/decrease concentration of enzyme vy p per 1%, concentration F6P (Jpsp) will
increase/decrease per ~—0.47%.

Conclusions

1.

Systems Biology Markup Language (SBML) standard dynamic models of biological processes
and available modelling and simulation software can be used to assess effect of particular enzyme
on the whole network of metabolic reactions. That can be used developing a control system of
biological processes in different branches.

2. Using option of Metabolic Control Analysis (MCA) within the software COPASI for steady state
of metabolic networks effective control enzymes can be found to control fluxes (flux control
coefficient) and concentrations of metabolites (concentration control coefficients).

3. Values of flux control coefficients indicate change of flux of reaction in percents within the
metabolic after increase of value of particular enzyme for 1%. Values of concentration control
coefficient indicate change of concentration of metabolite in percents within the metabolic after
increase of value of particular enzyme for 1%.

4. Thus enzymes with high values of coefficients can be chosen as a good control mean while low
values of coefficients mean its ineffectiveness in control of the network.

5. MCA methods allow prediction of side effects of control using particular enzymes.
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