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ABSTRACT 

Energy demands in buildings vary on a daily, weekly and seasonal basis. These demands can be matched 

with the help of thermal energy storage systems (TES). TES systems have the potential of making the use of 

thermal equipment more effective, and they are important means of offsetting the mismatch between thermal 

energy availability and demand. The peaking power problem arising in the case of a discrepancy between 

energy supply and expenditure can be resolved by using energy accumulation. The construction costs for 

energy accumulation can be lower than those for special peak energy equipment. The performance and 

design problems of an advanced type of reinforced concrete thermal energy storage tank with a “hot” inner 

steel liner have been studied. In the case of the system with a thin steel liner the thermal buckling 

optimisation problem of a steel lining shell has to be solved. By using the linear theory of cylindrical shells in 

the case of thermal action only, a critical temperature interval is determined depending on the shell geometry 

and the stiffness of the basic reinforced concrete structure. On the basis of multi-objective optimisation, the 

design methods for optimum weight and fastening of the lining shell to the basic structure are derived. 
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INTRODUCTION 

Demands for thermal energy vary on a seasonal 
basis. These demands can be matched with the help 
of Thermal Energy Storage (TES) systems that 
operate synergistically and are carefully matched to 
each specific application. TES systems have the 
potential of making the use of thermal equipment 
more effective, and are important means of 
offsetting the mismatch between thermal energy 
availability and demand. Well-designed systems 
can reduce initial and maintenance costs and 
improve energy efficiency (Dincer et al., 1997). 
A variety of TES techniques for heating and cooling 
applications have been developed over the past 
decades. Increasing energy demands, shortages of 
fossil fuels and environmental concerns are 
increasing the interest in the development of 
economically competitive and reliable means of 
seasonal storage of thermal energy. 
Different examples about the efficient utilization of 
natural and renewable energy sources, cost savings 
and increased efficiency achievable through the use 
of seasonal TES can be considered (Dincer and 
Rosen, 2011). 
Any system providing energy consists of the source 
of primary energy, a subsystem of transformation 
and consumers of the transformed energy. In such 
systems, discrepancies can arise in time and space 
between energy supply and expenditure. The 
peaking power problem can be resolved by using 
energy accumulation. The construction costs for 
energy accumulation can be lower than those for 
special peak energy equipment (Beckmann and 
Gilli, 1984).  

This study examines an advanced type of 
thermobattery with a “hot” inner steel liner (Fritz 
and Nemet, 1983). In order to prevent the 
penetration of vapour, gas and liquid into the base 
structure formed as a reinforced concrete structure, 
a thin steel liner is used. Between the liner and 
reinforced concrete vessel there is a thermal 
insulation layer (Fig. 1). The vessel acts in a plane 
stress state and must be resistant to normal inner 
pressure and its design has to be performed 
according to building codes (EN 1992-1-1, 2004). 
During transient regimes with low inner pressure 
and high temperature, the steel liner is in a state of 
thermal deformation as a result of thermal 
expansion (Beckmann and Gilli, 1984). Thermal 
stresses can cause buckling of the lining shell. 
During repeated buckling processes of the facing 
shell, permanent deformation can occur, which 
causes deterioration of shell stiffness and durability 
of the structure. In Fig. 1 the cross section of 
layered tank is shown and the inner steel layer is 
depicted in the post-buckling form. By using 
fasteners in definite places along the circumference, 
it is possible to force the steel liner to buckle with 
the predefined form. In general, the buckling form 
of the lining shell resting on the elastic support 
depends on the shell geometry, stiffness of basic 
structure or the interlayer of the thermal insulation, 
as well as on the type of fastening to the basic 
structure. 
To regulate the distribution of buckling waves along 
the length of the shell and around its circumference, 
and to improve the load carrying capacity of the 
steel shell during thermal action, a definite system 
of fasteners is needed. For a given length and radius 
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of a lining shell, the critical temperature interval 
depends on the thickness of the shell and the 
stiffness of the basic structure and parameters of the 
buckling form. The purpose of this study is to 
develop an analytical method for optimization of a 
steel liner and the determination of an optimum 
system for fastening  the liner to the basic structure. 
 

 
 

Figure 1. Scheme of thermal energy storage tank 
and cross section with buckled liner 

 
STEEL LINER BEHAVIOUR UNDER 

THERMAL ACTION 

Analytical solution to the thermal buckling 

problem 

The objective of this research is to study the thermal 
buckling problem of a steel shell resting on an 
elastic foundation. It is assumed that the 
temperature of the outer “cool” basic construction is 
fixed and that there is no temperature gradient 
throughout the thickness of the steel shell. For the 
given temperature interval, the modulus of elasticity 
of the shell does not change. Both ends of the shell 
are pinned. In-plane and out-of-plane (lateral) 
displacements are not possible (Fig. 2). 
The steel shell is considered as a cylinder of length 
L and radius R resting on an elastic foundation. It is 
assumed that the reaction offered by the basic 
construction to the thermal lateral deflection w of 
the steel shell is proportional to the deflection. 
Thus, the reaction per unit area of the shell is Kw, 
where K is constant, called the modulus of 
foundation. 
According to the linear theory of cylindrical shells 
in the case of thermal action only, the equilibrium 
equation is given by  
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and the deformation compatibility equation is  
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where   – effective value of thermal moment 
(Volmir, 1963; Brauns, 1988); 
T – average temperature along thickness of the 
shell; 
  – coefficient of thermal expansion; 
  – Poisson’s ratio of steel; 
h – thickness of shell. 
 
Cylindrical stiffness D is determined in the 
following way: 
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Figure 2. Analysis scheme of cylindrical part of 
lining shell resting on elastic foundation 

 
The coordinates x and y are oriented in a 
lengthways and circumferential direction, 
respectively. 
Elimination Airy stress function   in Eqs (1) and 
(2), and taking into account the reaction of the basic 
structure to thermal expansion of the shell yields the 
result 
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where x  and y  - normal stresses in direction; 
 x and y, respectively;  
K – modulus of foundation in post-buckling stage. 
 
Differential operators in expressions (1), (2), and 
(4) are expressed in the following forms: 
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The following function is assumed for the radial 
deflection of lining shell: 
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where m and n – numbers of half waves in the 
lengthways direction of the shell and waves in the 
circumferential direction of the shell, respectively. 
 
Equation (6) satisfies boundary conditions on the 
x = 0, L. 
By substituting representation of the lateral 
deflexion (6) into the governing differential 
equation (4) the following result is obtained: 
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The thermal stress component y  is defined by 
 

,)1( 2
2

0

00





















E

RT
TRK

h

R

wK
h

R

y

y

 (8) 

where w0 is deflection of the lining shell and  
K0 is modulus of foundation in the pre-buckling 
stage, respectively. 
 
The temperature increase is determined as 

0TTT  , where T0 is initial temperature. By 
solving Eqs (5) and (8) for 0T , the critical 

temperature interval crT  is determined. 
 
Structural optimization of lining shell 

If the system to be optimized does not yet exist, or 
if experimentation on an existing system is not 
feasible, due to high costs or for other practical 
reasons, the only approach is through an analytical 
model. The structural optimization problem 
considered consists of the weight )(W  
minimization of a steel shell lining including 
fastening to the basic structure. The design 
variables i  are the length )( 1 L  and radius 

)( 2 R  of the shell at the given tank volume and 
design temperature interval T , shell thickness 

)( 3 h , stiffness )( 04 K  of support 
(interlayer) in pre-buckling stage and wave numbers 

).,( 65 nm  The entire problem can be 

expressed in terms of the design variables as 
follows: find a vector ξ  such that  
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Subject it to behavioural constraints 
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and side constraints 
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Here QR denotes the set of retained constraints: 

U
jg  – the upper bond to a response quantity )(ξjg ; 

U
i

L
i ξ andξ  – the lower and upper limit of the 

independent design variables i , respectively; 
  – the specific gravity of steel; 

f astt opbot VVV and,  – volumes of the steel liner in 
the bottom and top part of the battery and the 
volume of fasteners, respectively. 
One important feature of constrained optimization 
is the difficulty in showing that a local optimum is 
in fact a global value. In general, however, starting 
from different base points, and if all searches lead 
to the same solution, it is likely that this is the 
global optimum. These procedures can be used 
freely in unconstrained problems. With restrictions, 
however, it is not so easy to obtain valid alternative 
starting points that satisfy all the constraints and 
which are significantly different. 
 
Numerical results and discussion 

The problem is solved with a linear elastic 
statement. The multi-objective optimization by 
applying Optimization Toolbox used together with 
MATLAB is performed. By applying the conjugate 
gradient-type minimizer, the optimum fastening 
system, depending on temperature interval and 
lining shell geometry as well as stiffness of the 
basic structure, according to Eq. (11) is performed. 
In practical cases, it is important not only to locate 
the optimum, but also to examine the nature of 
function in this neighbourhood, since it is unlikely 
that we can exactly maintain the optimal conditions. 
Certainly, each adjacent point should have a worse 
value of the objective function than that at the 
optimum, but this is not enough. It is also necessary 
to know the sensitivity of the designed system. 
The purpose of the investigations is not only to find 
the local or global optimum but also to carry out 
analysis and perform the design of the structure. An 
algorithm and PC programme have been developed 
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for drawing isolines in sections )( jiji  with all 
the factors fixed except two. After determination of 
buckling form, i.e. m and n, providing the given 
critical temperature interval at fixed length L, radius 
R and thickness h (Fig. 3), graphs for the practical 
design of the lining shells according to the given 
conditions are derived (Fig. 4). 
Note that, in order to prevent the thermal buckling 
below critical temperature for the given stiffness of 
the basic structure or insulation layer, a fixed 
thickness of lining shell is needed. To increase the 
critical temperature at the given stiffness of support 
structure and shell thickness n – 1 or n – 2, rows of 
fasteners in a circumferential direction can be used. 
The fasteners fix the shell at determined points 
along the circumference against the radial 
displacement resulting in buckling form with 
decreased number of waves.   
 

 
Figure 3. Isolines of critical temperature interval 

(◦C) of lining shell: m = 1, K0 0.75 MPa, L = 20 m, 
R = 2.5 m 

 
 

 
Figure 4. Critical temperature interval (◦C) isolines 
of lining shell: m = 1, n = 5, L = 20 m, R = 2.5 m

Fig. 5 shows the isolines of the lining shell weight 
with shell length and radius. Line 1 shows the 
weight variation in the cylindrical part of the liner at 
a fixed volume of thermal energy storage tank V = 
400 m3 and liner thickness 1.0 cm.  
The weight difference between tank with length L = 
5 m and L = 20 m is a factor of two. Taking into 
account the weight of the liner in semi-spherical 
bottoms, the difference is approximately 30%, i.e. 
33 and 24 tons, respectively. Because the 
construction of the cover (top) is complicated in the 
case of large diameter, a tank with a length to 
diameter ratio of 3-5 is more preferable. 
 

 
Figure 5. Isolines of lining shell weight (tons); 1 – 
cylindrical part of liner at tank volume V = 400 m3 

and liner thickness h = 1.0 cm 
 
On the basis of multi-variable optimization 
(Beveridge and Schechter, 1970) for the designed 
thermal energy storage tank of volume V, the 
minimum weight problem of the lining shell, 
including fastening system, can be solved by taking 
into account the behavioural and side constraints as 
well as the given degree of safety (Malmeister et al., 
1980) for thermal buckling. 
 
CONCLUSIONS 

An analytical method for the thermal buckling of a 
lining steel shell in a holder has been developed. On 
the basis of multi-objective optimization, the design 
methods for optimum weight and fastening system 
of the lining shell, depending on temperature 
interval, have been derived. By using fasteners, the 
lining shell is fixed to base structure at determined 
points along the circumference against radial 
displacement and buckling form with n – 1 or n – 2 
waves realized, and the degree of safety for thermal 
buckling of the liner for a given geometry has been 
increased.  
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